BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37003455)

  • 21. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum.
    Chen T; Zhu N; Xia H
    Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates.
    Radek A; Krumbach K; Gätgens J; Wendisch VF; Wiechert W; Bott M; Noack S; Marienhagen J
    J Biotechnol; 2014 Dec; 192 Pt A():156-60. PubMed ID: 25304460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Corynebacterium glutamicum CgynfM encodes a dicarboxylate transporter applicable to succinate production.
    Fukui K; Nanatani K; Nakayama M; Hara Y; Tokura M; Abe K
    J Biosci Bioeng; 2019 Apr; 127(4):465-471. PubMed ID: 30392965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.
    Buschke N; Becker J; Schäfer R; Kiefer P; Biedendieck R; Wittmann C
    Biotechnol J; 2013 May; 8(5):557-70. PubMed ID: 23447448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of overexpressing isocitrate lyase on succinate production in ldh(-1) Corynebacterium glutamicum].
    Yang C; Hao N; Yan M; Gao L; Xu L
    Sheng Wu Gong Cheng Xue Bao; 2013 Nov; 29(11):1696-700. PubMed ID: 24701837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.
    Radek A; Müller MF; Gätgens J; Eggeling L; Krumbach K; Marienhagen J; Noack S
    J Biotechnol; 2016 Aug; 231():160-166. PubMed ID: 27297548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bio-isopropanol production in Corynebacterium glutamicum: Metabolic redesign of synthetic bypasses and two-stage fermentation with gas stripping.
    Ko YJ; Cha J; Jeong WY; Lee ME; Cho BH; Nisha B; Jeong HJ; Park SE; Han SO
    Bioresour Technol; 2022 Jun; 354():127171. PubMed ID: 35472638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli.
    Liu R; Liang L; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Appl Microbiol Biotechnol; 2012 May; 94(4):959-68. PubMed ID: 22294432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum.
    Mindt M; Heuser M; Wendisch VF
    Bioresour Technol; 2019 Jun; 281():135-142. PubMed ID: 30818264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
    Zhou Z; Wang C; Chen Y; Zhang K; Xu H; Cai H; Chen Z
    Biotechnol Prog; 2015; 31(1):12-9. PubMed ID: 25311136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum.
    Zhu N; Xia H; Wang Z; Zhao X; Chen T
    PLoS One; 2013; 8(4):e60659. PubMed ID: 23593275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate.
    Kim EM; Um Y; Bott M; Woo HM
    FEMS Microbiol Lett; 2015 Oct; 362(19):. PubMed ID: 26363018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Succinic acid production from softwood with genome-edited Corynebacterium glutamicum using the CRISPR-Cpf1 system.
    Lee DS; Cho EJ; Nguyen DT; Song Y; Chang J; Bae HJ
    Biotechnol J; 2024 Jan; 19(1):e2300309. PubMed ID: 38180273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of Escherichia coli to produce succinate from woody hydrolysate under anaerobic conditions.
    Zhu F; Wang C; San KY; Bennett GN
    J Ind Microbiol Biotechnol; 2020 Feb; 47(2):223-232. PubMed ID: 31989325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Corynebacterium glutamicum cell factory design for the efficient production of cis, cis-muconic acid.
    Li M; Chen J; He K; Su C; Wu Y; Tan T
    Metab Eng; 2024 Mar; 82():225-237. PubMed ID: 38369050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Vertès AA; Okino S; Inui M; Yukawa H
    Appl Environ Microbiol; 2006 May; 72(5):3418-28. PubMed ID: 16672486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions.
    Sasaki M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):691-9. PubMed ID: 18810427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systems metabolic engineering of Corynebacterium glutamicum to assimilate formic acid for biomass accumulation and succinic acid production.
    Li K; Zhang X; Li C; Liang YC; Zhao XQ; Liu CG; Sinskey AJ; Bai FW
    Bioresour Technol; 2024 Jun; 402():130774. PubMed ID: 38701983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources.
    Pérez-García F; Ziert C; Risse JM; Wendisch VF
    J Biotechnol; 2017 Sep; 258():59-68. PubMed ID: 28478080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.