BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37003757)

  • 1. Fractionation factors reveal hidden frustration in an ancient allosteric module.
    VanSchouwen B; Della Libera L; Melacini G
    J Chem Phys; 2023 Mar; 158(12):121101. PubMed ID: 37003757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations of PKA cyclic nucleotide-binding domains reveal novel aspects of cyclic nucleotide selectivity.
    Lorenz R; Moon EW; Kim JJ; Schmidt SH; Sankaran B; Pavlidis IV; Kim C; Herberg FW
    Biochem J; 2017 Jul; 474(14):2389-2403. PubMed ID: 28583991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic nucleotide selectivity of protein kinase G isozymes.
    Kim C; Sharma R
    Protein Sci; 2021 Feb; 30(2):316-327. PubMed ID: 33271627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of cAMP Partial Agonism in Protein Kinase G (PKG).
    VanSchouwen B; Selvaratnam R; Giri R; Lorenz R; Herberg FW; Kim C; Melacini G
    J Biol Chem; 2015 Nov; 290(48):28631-41. PubMed ID: 26370085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Basis of Cyclic Nucleotide Selectivity in cGMP-dependent Protein Kinase II.
    Campbell JC; Kim JJ; Li KY; Huang GY; Reger AS; Matsuda S; Sankaran B; Link TM; Yuasa K; Ladbury JE; Casteel DE; Kim C
    J Biol Chem; 2016 Mar; 291(11):5623-5633. PubMed ID: 26769964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for cyclic-nucleotide selectivity and cGMP-selective activation of PKG I.
    Huang GY; Kim JJ; Reger AS; Lorenz R; Moon EW; Zhao C; Casteel DE; Bertinetti D; Vanschouwen B; Selvaratnam R; Pflugrath JW; Sankaran B; Melacini G; Herberg FW; Kim C
    Structure; 2014 Jan; 22(1):116-24. PubMed ID: 24239458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutron diffraction reveals hydrogen bonds critical for cGMP-selective activation: insights for cGMP-dependent protein kinase agonist design.
    Huang GY; Gerlits OO; Blakeley MP; Sankaran B; Kovalevsky AY; Kim C
    Biochemistry; 2014 Nov; 53(43):6725-7. PubMed ID: 25271401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching Cyclic Nucleotide-Selective Activation of Cyclic Adenosine Monophosphate-Dependent Protein Kinase Holoenzyme Reveals Distinct Roles of Tandem Cyclic Nucleotide-Binding Domains.
    He D; Lorenz R; Kim C; Herberg FW; Lim CJ
    ACS Chem Biol; 2017 Dec; 12(12):3057-3066. PubMed ID: 29111666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding cAMP-dependent allostery by NMR spectroscopy: comparative analysis of the EPAC1 cAMP-binding domain in its apo and cAMP-bound states.
    Mazhab-Jafari MT; Das R; Fotheringham SA; SilDas S; Chowdhury S; Melacini G
    J Am Chem Soc; 2007 Nov; 129(46):14482-92. PubMed ID: 17973384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutual Protein-Ligand Conformational Selection Drives cGMP vs. cAMP Selectivity in Protein Kinase G.
    VanSchouwen B; Boulton S; Melacini G
    J Mol Biol; 2021 Oct; 433(21):167202. PubMed ID: 34400180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and energetic analysis of activation by a cyclic nucleotide binding domain.
    Altieri SL; Clayton GM; Silverman WR; Olivares AO; De la Cruz EM; Thomas LR; Morais-Cabral JH
    J Mol Biol; 2008 Sep; 381(3):655-69. PubMed ID: 18619611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-crystal structures of PKG Iβ (92-227) with cGMP and cAMP reveal the molecular details of cyclic-nucleotide binding.
    Kim JJ; Casteel DE; Huang G; Kwon TH; Ren RK; Zwart P; Headd JJ; Brown NG; Chow DC; Palzkill T; Kim C
    PLoS One; 2011 Apr; 6(4):e18413. PubMed ID: 21526164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors.
    Lorenz R; Bertinetti D; Herberg FW
    Handb Exp Pharmacol; 2017; 238():105-122. PubMed ID: 27885524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purine nucleosides replace cAMP in allosteric regulation of PKA in trypanosomatid pathogens.
    Ober VT; Githure GB; Volpato Santos Y; Becker S; Moya Munoz G; Basquin J; Schwede F; Lorentzen E; Boshart M
    Elife; 2024 Mar; 12():. PubMed ID: 38517938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of cGMP-dependent protein kinase Iβ cyclic nucleotide-binding-B domain : Rp-cGMPS complex reveals an apo-like, inactive conformation.
    Campbell JC; VanSchouwen B; Lorenz R; Sankaran B; Herberg FW; Melacini G; Kim C
    FEBS Lett; 2017 Jan; 591(1):221-230. PubMed ID: 27914169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of ligand selectivity in a cyclic nucleotide-regulated potassium channel.
    Pessoa J; Fonseca F; Furini S; Morais-Cabral JH
    J Gen Physiol; 2014 Jul; 144(1):41-54. PubMed ID: 24981229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamically driven ligand selectivity in cyclic nucleotide binding domains.
    Das R; Chowdhury S; Mazhab-Jafari MT; Sildas S; Selvaratnam R; Melacini G
    J Biol Chem; 2009 Aug; 284(35):23682-96. PubMed ID: 19403523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the molecular mechanism of discrimination between cGMP and cAMP in the allosteric sites of the cGMP-binding cGMP-specific phosphodiesterase (PDE5).
    Turko IV; Francis SH; Corbin JD
    J Biol Chem; 1999 Oct; 274(41):29038-41. PubMed ID: 10506154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cGMP Binding Domain D Mediates a Unique Activation Mechanism in Plasmodium falciparum PKG.
    Franz E; Knape MJ; Herberg FW
    ACS Infect Dis; 2018 Mar; 4(3):415-423. PubMed ID: 29251493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of allosteric inhibition in the
    Byun JA; Van K; Huang J; Henning P; Franz E; Akimoto M; Herberg FW; Kim C; Melacini G
    J Biol Chem; 2020 Jun; 295(25):8480-8491. PubMed ID: 32317283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.