These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37003785)

  • 21. Control of ice nucleation: freezing and antifreeze strategies.
    Zhang Z; Liu XY
    Chem Soc Rev; 2018 Sep; 47(18):7116-7139. PubMed ID: 30137078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free energy barriers for anti-freeze protein engulfment in ice: Effects of supercooling, footprint size, and spatial separation.
    Farag H; Peters B
    J Chem Phys; 2023 Mar; 158(9):094501. PubMed ID: 36889941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interfacial Free Energy as the Key to the Pressure-Induced Deceleration of Ice Nucleation.
    Espinosa JR; Zaragoza A; Rosales-Pelaez P; Navarro C; Valeriani C; Vega C; Sanz E
    Phys Rev Lett; 2016 Sep; 117(13):135702. PubMed ID: 27715079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homogeneous ice nucleation from supercooled water.
    Li T; Donadio D; Russo G; Galli G
    Phys Chem Chem Phys; 2011 Nov; 13(44):19807-13. PubMed ID: 21989826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
    García Fernández R; Abascal JL; Vega C
    J Chem Phys; 2006 Apr; 124(14):144506. PubMed ID: 16626213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen polarity of interfacial water regulates heterogeneous ice nucleation.
    Shao M; Zhang C; Qi C; Wang C; Wang J; Ye F; Zhou X
    Phys Chem Chem Phys; 2019 Dec; 22(1):258-264. PubMed ID: 31808477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of the carbon dioxide hydrate-water interfacial energy.
    Algaba J; Acuña E; Míguez JM; Mendiboure B; Zerón IM; Blas FJ
    J Colloid Interface Sci; 2022 Oct; 623():354-367. PubMed ID: 35594594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metastable phase equilibria in the ice II stability field. A Raman study of synthetic high-density water inclusions in quartz.
    Krüger Y; Mercury L; Canizarès A; Marti D; Simon P
    Phys Chem Chem Phys; 2019 Sep; 21(35):19554-19566. PubMed ID: 31464321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The phase diagram of water at negative pressures: virtual ices.
    Conde MM; Vega C; Tribello GA; Slater B
    J Chem Phys; 2009 Jul; 131(3):034510. PubMed ID: 19624212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is Ice Nucleation by Organic Crystals Nonclassical? An Assessment of the Monolayer Hypothesis of Ice Nucleation.
    Metya AK; Molinero V
    J Am Chem Soc; 2021 Mar; 143(12):4607-4624. PubMed ID: 33729789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials.
    Koyama Y; Tanaka H; Gao G; Zeng XC
    J Chem Phys; 2004 Oct; 121(16):7926-31. PubMed ID: 15485255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is Water at the Graphite Interface Vapor-like or Ice-like?
    Qiu Y; Lupi L; Molinero V
    J Phys Chem B; 2018 Apr; 122(13):3626-3634. PubMed ID: 29298058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study of the ice-water interface using the TIP4P/2005 water model.
    Benet J; MacDowell LG; Sanz E
    Phys Chem Chem Phys; 2014 Oct; 16(40):22159-66. PubMed ID: 25213106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.
    Ramírez R; Herrero CP
    J Chem Phys; 2010 Oct; 133(14):144511. PubMed ID: 20950021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Salt, Pressure, and Water Activity on Homogeneous Ice Nucleation.
    Espinosa JR; Soria GD; Ramirez J; Valeriani C; Vega C; Sanz E
    J Phys Chem Lett; 2017 Sep; 8(18):4486-4491. PubMed ID: 28876070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antifreeze proteins and homogeneous nucleation: On the physical determinants impeding ice crystal growth.
    Bianco V; Espinosa JR; Vega C
    J Chem Phys; 2020 Sep; 153(9):091102. PubMed ID: 32891082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Can molecular simulations reliably compare homogeneous and heterogeneous ice nucleation?
    Atherton D; Michaelides A; Cox SJ
    J Chem Phys; 2022 Apr; 156(16):164501. PubMed ID: 35490004
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase equilibrium of liquid water and hexagonal ice from enhanced sampling molecular dynamics simulations.
    Piaggi PM; Car R
    J Chem Phys; 2020 May; 152(20):204116. PubMed ID: 32486691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability and Metastability of Liquid Water in a Machine-Learned Coarse-Grained Model with Short-Range Interactions.
    Dhabal D; Sankaranarayanan SKRS; Molinero V
    J Phys Chem B; 2022 Dec; 126(47):9881-9892. PubMed ID: 36383428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of interfacial dipole on heterogeneous ice nucleation.
    Lu H; Xu Q; Wu J; Hong R; Zhang Z
    J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34181589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.