These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37004073)

  • 21. Stomata on the abaxial and adaxial leaf surfaces contribute differently to leaf gas exchange and photosynthesis in wheat.
    Wall S; Vialet-Chabrand S; Davey P; Van Rie J; Galle A; Cockram J; Lawson T
    New Phytol; 2022 Sep; 235(5):1743-1756. PubMed ID: 35586964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.
    Azoulay-Shemer T; Palomares A; Bagheri A; Israelsson-Nordstrom M; Engineer CB; Bargmann BO; Stephan AB; Schroeder JI
    Plant J; 2015 Aug; 83(4):567-81. PubMed ID: 26096271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contrasting responses to soil and water salinity in stomata and canopy traits produced convergence of water-use in tomatoes (Solanum esculentum) and okra (Abelmoschus esculentus): application to water management.
    Yunusa IA; Palmer AR; Kamululdeen J; Punthakey JF
    J Sci Food Agric; 2022 Jun; 102(8):3227-3236. PubMed ID: 34796494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stomatal Ratio Showing No Response to Light Intensity in
    Wang T; Zheng L; Xiong D; Wang F; Man J; Deng N; Cui K; Huang J; Peng S; Ling X
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relating Stomatal Conductance to Leaf Functional Traits.
    Kröber W; Plath I; Heklau H; Bruelheide H
    J Vis Exp; 2015 Oct; (104):. PubMed ID: 26484692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Guard Cell Metabolism and Stomatal Function.
    Lawson T; Matthews J
    Annu Rev Plant Biol; 2020 Apr; 71():273-302. PubMed ID: 32155341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Stomatal Model of Anatomical Tradeoffs Between Gas Exchange and Pathogen Colonization.
    Muir CD
    Front Plant Sci; 2020; 11():518991. PubMed ID: 33193466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drivers of Natural Variation in Water-Use Efficiency Under Fluctuating Light Are Promising Targets for Improvement in Sorghum.
    Pignon CP; Leakey ADB; Long SP; Kromdijk J
    Front Plant Sci; 2021; 12():627432. PubMed ID: 33597965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stomatal development in the context of epidermal tissues.
    Torii KU
    Ann Bot; 2021 Jul; 128(2):137-148. PubMed ID: 33877316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytokinin activity increases stomatal density and transpiration rate in tomato.
    Farber M; Attia Z; Weiss D
    J Exp Bot; 2016 Dec; 67(22):6351-6362. PubMed ID: 27811005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stomatal patchiness in Mediterranean evergreen sclerophylls : Phenomenology and consequences for the interpretation of the midday depression in photosynthesis and transpiration.
    Beyschlag W; Pfanz H; Ryel RJ
    Planta; 1992 Jul; 187(4):546-53. PubMed ID: 24178151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World.
    Bertolino LT; Caine RS; Gray JE
    Front Plant Sci; 2019; 10():225. PubMed ID: 30894867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rice Stomatal Mega-Papillae Restrict Water Loss and Pathogen Entry.
    Pitaloka MK; Harrison EL; Hepworth C; Wanchana S; Toojinda T; Phetluan W; Brench RA; Narawatthana S; Vanavichit A; Gray JE; Caine RS; Arikit S
    Front Plant Sci; 2021; 12():677839. PubMed ID: 34149777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty.
    Gao Y; Wu M; Zhang M; Jiang W; Liang E; Zhang D; Zhang C; Xiao N; Chen J
    Plant Mol Biol; 2018 Jul; 97(4-5):311-323. PubMed ID: 29869742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The structural correlations and the physiological functions of stomatal morphology and leaf structures in C
    Huang G; Yang Y; Zhu L; Ren X; Peng S; Li Y
    Planta; 2022 Jul; 256(2):39. PubMed ID: 35829784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From reproduction to production, stomata are the master regulators.
    Brodribb TJ; Sussmilch F; McAdam SAM
    Plant J; 2020 Feb; 101(4):756-767. PubMed ID: 31596990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photosynthetic Plasticity and Stomata Adjustment in Chromosome Segment Substitution Lines of Rice Cultivar KDML105 under Drought Stress.
    Lertngim N; Ruangsiri M; Klinsawang S; Raksatikan P; Thunnom B; Siangliw M; Toojinda T; Siangliw JL
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A naturally optimized mass transfer process: The stomatal transpiration of plant leaves.
    Xu K; Guo L; Ye H
    J Plant Physiol; 2019; 234-235():138-144. PubMed ID: 30798115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides.
    Fanourakis D; Giday H; Milla R; Pieruschka R; Kjaer KH; Bolger M; Vasilevski A; Nunes-Nesi A; Fiorani F; Ottosen CO
    Ann Bot; 2015 Mar; 115(4):555-65. PubMed ID: 25538116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub.
    Carlson JE; Adams CA; Holsinger KE
    Ann Bot; 2016 Jan; 117(1):195-207. PubMed ID: 26424782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.