These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37004271)

  • 1. A computational modelling framework for assessing information transmission with cochlear implants.
    Leclère T; Johannesen PT; Wijetillake A; Segovia-Martínez M; Lopez-Poveda EA
    Hear Res; 2023 May; 432():108744. PubMed ID: 37004271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Computational Model of a Single Auditory Nerve Fiber for Electric-Acoustic Stimulation.
    Kipping D; Nogueira W
    J Assoc Res Otolaryngol; 2022 Dec; 23(6):835-858. PubMed ID: 36333573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Neural Response Telemetry to Monitor Physiological Responses to Acoustic Stimulation in Hybrid Cochlear Implant Users.
    Abbas PJ; Tejani VD; Scheperle RA; Brown CJ
    Ear Hear; 2017; 38(4):409-425. PubMed ID: 28085738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation.
    van Gendt MJ; Briaire JJ; Kalkman RK; Frijns JHM
    Hear Res; 2016 Nov; 341():130-143. PubMed ID: 27594099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD; Abbas PJ; Brown CJ
    Ear Hear; 2017; 38(5):e268-e284. PubMed ID: 28207576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.
    Gransier R; Deprez H; Hofmann M; Moonen M; van Wieringen A; Wouters J
    Hear Res; 2016 May; 335():149-160. PubMed ID: 26994660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding and decoding amplitude-modulated cochlear implant stimuli--a point process analysis.
    Goldwyn JH; Shea-Brown E; Rubinstein JT
    J Comput Neurosci; 2010 Jun; 28(3):405-24. PubMed ID: 20177761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation.
    van Gendt MJ; Briaire JJ; Kalkman RK; Frijns JHM
    Hear Res; 2017 Aug; 351():19-33. PubMed ID: 28625417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing of speech temporal and spectral information by users of auditory brainstem implants and cochlear implants.
    Azadpour M; McKay CM
    Ear Hear; 2014; 35(5):e192-203. PubMed ID: 25010634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phenomenological computational model of the evoked action potential fitted to human cochlear implant responses.
    Ramos-de-Miguel Á; Escobar JM; Greiner D; Benítez D; Rodríguez E; Oliver A; Hernández M; Ramos-Macías Á
    PLoS Comput Biol; 2022 May; 18(5):e1010134. PubMed ID: 35622861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of response properties of the electrically stimulated auditory nerve reported in human listeners and in animal models.
    Skidmore J; Ramekers D; Bruce IC; He S
    Hear Res; 2022 Dec; 426():108643. PubMed ID: 36343534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the rates of pseudo-spontaneous spikes generated by electric stimuli on information transmission in an auditory nerve fiber model.
    Kumsa P; Mino H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5246-9. PubMed ID: 24110919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of stimulus level on the temporal response properties of the auditory nerve in cochlear implants.
    Hughes ML; Laurello SA
    Hear Res; 2017 Aug; 351():116-129. PubMed ID: 28633960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational study to model the effect of electrode-to-auditory nerve fiber distance on spectral resolution in cochlear implant.
    Yang H; Won JH; Choi I; Woo J
    PLoS One; 2020; 15(8):e0236784. PubMed ID: 32745116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating electrical modulation detection thresholds using a biophysical model of the auditory nerve.
    O'Brien GE; Imennov NS; Rubinstein JT
    J Acoust Soc Am; 2016 May; 139(5):2448. PubMed ID: 27250141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Modulation Transmission Is a Marker for Speech Perception in Noise in Cochlear Implant Users.
    Gransier R; Luke R; van Wieringen A; Wouters J
    Ear Hear; 2020; 41(3):591-602. PubMed ID: 31567565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency.
    Raggio MW; Schreiner CE
    J Neurophysiol; 1994 Nov; 72(5):2334-59. PubMed ID: 7884463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postoperative Electrocochleography from Hybrid Cochlear Implant users: An Alternative Analysis Procedure.
    Kim JS; Tejani VD; Abbas PJ; Brown CJ
    Hear Res; 2018 Dec; 370():304-315. PubMed ID: 30393003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplitude Growth Functions of Auditory Nerve Responses to Electric Pulse Stimulation With Varied Interphase Gaps in Cochlear Implant Users With Ipsilateral Residual Hearing.
    Imsiecke M; Büchner A; Lenarz T; Nogueira W
    Trends Hear; 2021; 25():23312165211014137. PubMed ID: 34181493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysics-inspired spike rate adaptation for computationally efficient phenomenological nerve modeling.
    de Nobel J; Martens SSM; Briaire JJ; Bäck THW; Kononova AV; Frijns JHM
    Hear Res; 2024 Jun; 447():109011. PubMed ID: 38692015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.