These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 37004396)
1. Bifunctional Y-shaped probe combined with dual amplification for colorimetric sensing and molecular logic operation of two miRNAs. Li ZH; Yang M; Zhao CX; Shu Y Talanta; 2023 Jul; 259():124480. PubMed ID: 37004396 [TBL] [Abstract][Full Text] [Related]
2. A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification. Huang Y; Wang W; Wu T; Xu LP; Wen Y; Zhang X Anal Bioanal Chem; 2016 Nov; 408(28):8195-8202. PubMed ID: 27624762 [TBL] [Abstract][Full Text] [Related]
3. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Huang J; Shangguan J; Guo Q; Ma W; Wang H; Jia R; Ye Z; He X; Wang K Analyst; 2019 Aug; 144(16):4917-4924. PubMed ID: 31313769 [TBL] [Abstract][Full Text] [Related]
4. Triple-Input Molecular AND Logic Gates for Sensitive Detection of Multiple miRNAs. Ma X; Chen X; Tang Y; Yan R; Miao P ACS Appl Mater Interfaces; 2019 Nov; 11(44):41157-41164. PubMed ID: 31613595 [TBL] [Abstract][Full Text] [Related]
5. Ultrasensitive, colorimetric detection of microRNAs based on isothermal exponential amplification reaction-assisted gold nanoparticle amplification. Li RD; Yin BC; Ye BC Biosens Bioelectron; 2016 Dec; 86():1011-1016. PubMed ID: 27498329 [TBL] [Abstract][Full Text] [Related]
6. Exponential amplification reaction and triplex DNA mediated aggregation of gold nanoparticles for sensitive colorimetric detection of microRNA. Wei S; Chen G; Jia X; Mao X; Chen T; Mao D; Zhang W; Xiong W Anal Chim Acta; 2020 Jan; 1095():179-184. PubMed ID: 31864620 [TBL] [Abstract][Full Text] [Related]
7. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification. Li S; Shang X; Liu J; Wang Y; Guo Y; You J Anal Biochem; 2017 Jul; 528():47-52. PubMed ID: 28442309 [TBL] [Abstract][Full Text] [Related]
8. A Novel Design Combining Isothermal Exponential Amplification and Gold-Nanoparticles Visualization for Rapid Detection of miRNAs. Jiang J; Zhang B; Zhang C; Guan Y Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373308 [TBL] [Abstract][Full Text] [Related]
9. A fluorometric aptamer method for kanamycin by applying a dual amplification strategy and using double Y-shaped DNA probes on a gold bar and on magnetite nanoparticles. Zhang K; Cao J; Wu Y; Hu F; Li T; Wang Y; Gan N Mikrochim Acta; 2019 Jan; 186(2):120. PubMed ID: 30666478 [TBL] [Abstract][Full Text] [Related]
10. Colorimetric aggregation assay for kanamycin using gold nanoparticles modified with hairpin DNA probes and hybridization chain reaction-assisted amplification. Xu C; Ying Y; Ping J Mikrochim Acta; 2019 Jun; 186(7):448. PubMed ID: 31197488 [TBL] [Abstract][Full Text] [Related]
11. A sensitive electrochemiluminescence DNA biosensor based on the signal amplification of ExoIII enzyme-assisted hybridization chain reaction combined with nanoparticle-loaded multiple probes. Hai H; Chen C; Chen D; Li P; Shan Y; Li J Mikrochim Acta; 2021 Mar; 188(4):125. PubMed ID: 33723966 [TBL] [Abstract][Full Text] [Related]
12. Designed diblock hairpin probes for the nonenzymatic and label-free detection of nucleic acid. Wen J; Chen J; Zhuang L; Zhou S Biosens Bioelectron; 2016 May; 79():656-60. PubMed ID: 26765529 [TBL] [Abstract][Full Text] [Related]
13. Hybridization chain reaction assisted terahertz metamaterial biosensor for highly sensitive detection of microRNAs. Chen J; Hu F; Lin S; Song Z; Duan Z; Zhang L; Jiang M Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb; 307():123646. PubMed ID: 37980831 [TBL] [Abstract][Full Text] [Related]
14. A DNA-linker-DNA bifunctional probe for simultaneous SERS detection of miRNAs via symmetric signal amplification. Ye S; Wang M; Wang Z; Zhang N; Luo X Chem Commun (Camb); 2018 Jul; 54(56):7786-7789. PubMed ID: 29943776 [TBL] [Abstract][Full Text] [Related]
15. Colorimetric and visual mercury(II) assay based on target-induced cyclic enzymatic amplification, thymine-Hg(II)-thymine interaction, and aggregation of gold nanoparticles. Song X; Wang Y; Liu S; Zhang X; Wang H; Wang J; Huang J Mikrochim Acta; 2019 Jan; 186(2):105. PubMed ID: 30637516 [TBL] [Abstract][Full Text] [Related]
16. Colorimetric detection of sequence-specific microRNA based on duplex-specific nuclease-assisted nanoparticle amplification. Wang Q; Li RD; Yin BC; Ye BC Analyst; 2015 Sep; 140(18):6306-12. PubMed ID: 26258182 [TBL] [Abstract][Full Text] [Related]
17. Cascade Amplification-Mediated In Situ Hot-Spot Assembly for MicroRNA Detection and Molecular Logic Gate Operations. Yu S; Wang Y; Jiang LP; Bi S; Zhu JJ Anal Chem; 2018 Apr; 90(7):4544-4551. PubMed ID: 29570270 [TBL] [Abstract][Full Text] [Related]
18. A gold nanoparticle-based colorimetric mercury(II) biosensor using a DNA probe with phosphorothioate RNA modification and exonuclease III-assisted signal amplification. Xing Y; Zhu Q; Zhou X; Qi P Mikrochim Acta; 2020 Mar; 187(4):214. PubMed ID: 32162015 [TBL] [Abstract][Full Text] [Related]
19. Lateral flow nucleic acid biosensor for sensitive detection of microRNAs based on the dual amplification strategy of duplex-specific nuclease and hybridization chain reaction. Ying N; Ju C; Sun X; Li L; Chang H; Song G; Li Z; Wan J; Dai E PLoS One; 2017; 12(9):e0185091. PubMed ID: 28945768 [TBL] [Abstract][Full Text] [Related]
20. Establishment of a universal and sensitive plasmonic biosensor platform based on the hybridization chain reaction (HCR) amplification induced by a triple-helix molecular switch. Wang G; Li J; He Y; Liu J; Yu M; Wang G Analyst; 2020 Jun; 145(11):3864-3870. PubMed ID: 32270806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]