These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Validation of Local Hybrid Functionals for Excited States: Structures, Fluorescence, Phosphorescence, and Vibronic Spectra. Grotjahn R; Kaupp M J Chem Theory Comput; 2020 Sep; 16(9):5821-5834. PubMed ID: 32698580 [TBL] [Abstract][Full Text] [Related]
3. How accurate are TD-DFT excited-state geometries compared to DFT ground-state geometries? Wang J; Durbeej B J Comput Chem; 2020 Jul; 41(18):1718-1729. PubMed ID: 32323870 [TBL] [Abstract][Full Text] [Related]
4. Triplet Excited States and Singlet Oxygen Production by Analogs of Red Wine Pyranoanthocyanins. Silva GTM; Thomas SS; Silva CP; Schlothauer JC; Baptista MS; Freitas AA; Bohne C; Quina FH Photochem Photobiol; 2019 Jan; 95(1):176-182. PubMed ID: 29978920 [TBL] [Abstract][Full Text] [Related]
5. TD-DFT and Experimental Methods for Unraveling the Energy Distribution of Charge-Transfer Triplet/Singlet States of a TADF Molecule in a Frozen Matrix. Woo SJ; Kim JJ J Phys Chem A; 2021 Feb; 125(5):1234-1242. PubMed ID: 33517658 [TBL] [Abstract][Full Text] [Related]
6. Benchmarks for electronically excited states: time-dependent density functional theory and density functional theory based multireference configuration interaction. Silva-Junior MR; Schreiber M; Sauer SP; Thiel W J Chem Phys; 2008 Sep; 129(10):104103. PubMed ID: 19044904 [TBL] [Abstract][Full Text] [Related]
7. Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals. Körzdörfer T; Brédas JL Acc Chem Res; 2014 Nov; 47(11):3284-91. PubMed ID: 24784485 [TBL] [Abstract][Full Text] [Related]
8. TD-CI simulation of the electronic optical response of molecules in intense fields II: comparison of DFT functionals and EOM-CCSD. Sonk JA; Schlegel HB J Phys Chem A; 2011 Oct; 115(42):11832-40. PubMed ID: 21923137 [TBL] [Abstract][Full Text] [Related]
9. Predictive power of long-range corrected functionals on the spectroscopic properties of tetrapyrrole derivatives for photodynamic therapy. Eriksson ES; Eriksson LA Phys Chem Chem Phys; 2011 Apr; 13(15):7207-17. PubMed ID: 21409255 [TBL] [Abstract][Full Text] [Related]
10. Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules. Jacquemin D; Wathelet V; Perpète EA; Adamo C J Chem Theory Comput; 2009 Sep; 5(9):2420-35. PubMed ID: 26616623 [TBL] [Abstract][Full Text] [Related]
11. Speed-Up of the Excited-State Benchmarking: Double-Hybrid Density Functionals as Test Cases. Brémond É; Savarese M; Pérez-Jiménez ÁJ; Sancho-García JC; Adamo C J Chem Theory Comput; 2017 Nov; 13(11):5539-5551. PubMed ID: 28976749 [TBL] [Abstract][Full Text] [Related]
12. Assessment of Functionals for TD-DFT Calculations of Singlet-Triplet Transitions. Jacquemin D; Perpète EA; Ciofini I; Adamo C J Chem Theory Comput; 2010 May; 6(5):1532-7. PubMed ID: 26615688 [TBL] [Abstract][Full Text] [Related]
13. Benchmark Study on the Triplet Excited-State Geometries and Phosphorescence Energies of Heterocyclic Compounds: Comparison Between TD-PBE0 and SAC-CI. Bousquet D; Fukuda R; Jacquemin D; Ciofini I; Adamo C; Ehara M J Chem Theory Comput; 2014 Sep; 10(9):3969-79. PubMed ID: 26588540 [TBL] [Abstract][Full Text] [Related]
14. Halogenated BODIPY photosensitizers: Photophysical processes for generation of excited triplet state, excited singlet state and singlet oxygen. Hu W; Zhang R; Zhang XF; Liu J; Luo L Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120965. PubMed ID: 35131619 [TBL] [Abstract][Full Text] [Related]
15. Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self-consistent field wave functions. Hedegård ED; Heiden F; Knecht S; Fromager E; Jensen HJ J Chem Phys; 2013 Nov; 139(18):184308. PubMed ID: 24320275 [TBL] [Abstract][Full Text] [Related]
16. Benchmarking DFT Functionals for Excited-State Calculations of Donor-Acceptor TADF Emitters: Insights on the Key Parameters Determining Reverse Inter-System Crossing. Hall D; Sancho-García JC; Pershin A; Beljonne D; Zysman-Colman E; Olivier Y J Phys Chem A; 2023 Jun; 127(21):4743-4757. PubMed ID: 37196185 [TBL] [Abstract][Full Text] [Related]
17. Double hybrids and time-dependent density functional theory: An implementation and benchmark on charge transfer excited states. Ottochian A; Morgillo C; Ciofini I; Frisch MJ; Scalmani G; Adamo C J Comput Chem; 2020 May; 41(13):1242-1251. PubMed ID: 32073175 [TBL] [Abstract][Full Text] [Related]
18. Benchmarking Charge-Transfer Excited States in TADF Emitters: ΔDFT Outperforms TD-DFT for Emission Energies. Froitzheim T; Kunze L; Grimme S; Herbert JM; Mewes JM J Phys Chem A; 2024 Aug; 128(30):6324-6335. PubMed ID: 39028862 [TBL] [Abstract][Full Text] [Related]
19. Noncovalently bound excited-state dimers: a perspective on current time-dependent density functional theory approaches applied to aromatic excimer models. Hancock AC; Goerigk L RSC Adv; 2023 Dec; 13(51):35964-35984. PubMed ID: 38090083 [TBL] [Abstract][Full Text] [Related]
20. Accurate predictions of the electronic excited states of BODIPY based dye sensitizers using spin-component-scaled double-hybrid functionals: a TD-DFT benchmark study. Alkhatib Q; Helal W; Marashdeh A RSC Adv; 2022 Jan; 12(3):1704-1717. PubMed ID: 35425182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]