BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37004657)

  • 1. A structural bio-chemo-mechanical model for vascular smooth muscle cell traction force microscopy.
    Flanary SM; Barocas VH
    Biomech Model Mechanobiol; 2023 Aug; 22(4):1221-1238. PubMed ID: 37004657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring (biological) materials mechanics with atomic force microscopy. 5. Traction force microscopy (cell traction forces).
    Gil-Redondo JC; Weber A; Vivanco MD; Toca-Herrera JL
    Microsc Res Tech; 2023 Sep; 86(9):1069-1078. PubMed ID: 37345422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution traction force microscopy with enhanced tracer density enables capturing molecular scale traction.
    Xu Y; Guo C; Yang X; Yuan W; Zhang X; Sun Y; Wen G; Wang L; Li H; Xiong C; Yang C
    Biomater Sci; 2023 Jan; 11(3):1056-1065. PubMed ID: 36562450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced stiffness and augmented traction force in type 2 diabetic coronary microvascular smooth muscle.
    McCallinhart PE; Cho Y; Sun Z; Ghadiali S; Meininger GA; Trask AJ
    Am J Physiol Heart Circ Physiol; 2020 Jun; 318(6):H1410-H1419. PubMed ID: 32357115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2.5D Traction Force Microscopy: Imaging three-dimensional cell forces at interfaces and biological applications.
    Delanoë-Ayari H; Hiraiwa T; Marcq P; Rieu JP; Saw TB
    Int J Biochem Cell Biol; 2023 Aug; 161():106432. PubMed ID: 37290687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of traction force microscopy: influence of cell mechanics, adhesion, and morphology.
    Zielinski R; Mihai C; Kniss D; Ghadiali SN
    J Biomech Eng; 2013 Jul; 135(7):71009. PubMed ID: 23720059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Cell Adhesion using Hydrogel Patterning Techniques for Applications in Traction Force Microscopy.
    Christian J; Blumberg JW; Probst D; Lo Giudice C; Sindt S; Selhuber-Unkel C; Schwarz US; Cavalcanti-Adam EA
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35156655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational bridge between traction force microscopy and tissue contraction.
    Flanary SM; Jo S; Ravichandran R; Alejandro EU; Barocas VH
    J Appl Phys; 2023 Aug; 134(7):074901. PubMed ID: 37593660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation tool for traction force microscopy.
    Jorge-Peñas A; Muñoz-Barrutia A; de-Juan-Pardo EM; Ortiz-de-Solorzano C
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1377-85. PubMed ID: 24697293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying Immune Cell Force Generation Using Traction Force Microscopy.
    Issler M; Colin-York H; Fritzsche M
    Methods Mol Biol; 2023; 2654():363-373. PubMed ID: 37106194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Biologist's Guide to Traction Force Microscopy Using Polydimethylsiloxane Substrate for Two-Dimensional Cell Cultures.
    Teo JL; Lim CT; Yap AS; Saw TB
    STAR Protoc; 2020 Sep; 1(2):100098. PubMed ID: 33111126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. May the force be with your (immune) cells: an introduction to traction force microscopy in Immunology.
    Mustapha F; Sengupta K; Puech PH
    Front Immunol; 2022; 13():898558. PubMed ID: 35990636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian traction force estimation using cell boundary-dependent force priors.
    Fujikawa R; Okimura C; Kozawa S; Ikeda K; Inagaki N; Iwadate Y; Sakumura Y
    Biophys J; 2023 Dec; 122(23):4542-4554. PubMed ID: 37915171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced in silico validation framework for three-dimensional traction force microscopy and application to an in vitro model of sprouting angiogenesis.
    Barrasa-Fano J; Shapeti A; de Jong J; Ranga A; Sanz-Herrera JA; Van Oosterwyck H
    Acta Biomater; 2021 May; 126():326-338. PubMed ID: 33737201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A primer to traction force microscopy.
    Zancla A; Mozetic P; Orsini M; Forte G; Rainer A
    J Biol Chem; 2022 May; 298(5):101867. PubMed ID: 35351517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation and evaluation of 3D traction force microscopy.
    Holenstein CN; Lendi CR; Wili N; Snedeker JG
    Comput Methods Biomech Biomed Engin; 2019 Jun; 22(8):853-860. PubMed ID: 30963777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired vascular smooth muscle cell force-generating capacity and phenotypic deregulation in Marfan Syndrome mice.
    Nolasco P; Fernandes CG; Ribeiro-Silva JC; Oliveira PVS; Sacrini M; de Brito IV; De Bessa TC; Pereira LV; Tanaka LY; Alencar A; Laurindo FRM
    Biochim Biophys Acta Mol Basis Dis; 2020 Jan; 1866(1):165587. PubMed ID: 31678158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy.
    Mulligan JA; Feng X; Adie SG
    Sci Rep; 2019 Mar; 9(1):4086. PubMed ID: 30858424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peri/epicellular protein disulfide isomerase-A1 acts as an upstream organizer of cytoskeletal mechanoadaptation in vascular smooth muscle cells.
    Tanaka LY; Araujo TLS; Rodriguez AI; Ferraz MS; Pelegati VB; Morais MCC; Santos AMD; Cesar CL; Ramos AF; Alencar AM; Laurindo FRM
    Am J Physiol Heart Circ Physiol; 2019 Mar; 316(3):H566-H579. PubMed ID: 30499716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traction force microscopy by deep learning.
    Wang YL; Lin YC
    Biophys J; 2021 Aug; 120(15):3079-3090. PubMed ID: 34214526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.