BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37004923)

  • 1. Chloroplast engineering of the green microalgae Chlamydomonas reinhardtii for the production of HAA, the lipid moiety of rhamnolipid biosurfactants.
    Miró-Vinyals B; Artigues M; Wostrikoff K; Monte E; Broto-Puig F; Leivar P; Planas A
    N Biotechnol; 2023 Sep; 76():1-12. PubMed ID: 37004923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multigenic engineering of the chloroplast genome in the green alga
    Larrea-Alvarez M; Purton S
    Microbiology (Reading); 2020 Jun; 166(6):510-515. PubMed ID: 32250732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting the Natural Diversity of RhlA Acyltransferases for the Synthesis of the Rhamnolipid Precursor 3-(3-Hydroxyalkanoyloxy)Alkanoic Acid.
    Germer A; Tiso T; Müller C; Behrens B; Vosse C; Scholz K; Froning M; Hayen H; Blank LM
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental and nuclear influences on microalgal chloroplast gene expression.
    Carrera-Pacheco SE; Hankamer B; Oey M
    Trends Plant Sci; 2023 Aug; 28(8):955-967. PubMed ID: 37080835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory.
    Kwon YM; Kim KW; Choi TY; Kim SY; Kim JYH
    World J Microbiol Biotechnol; 2018 Nov; 34(12):183. PubMed ID: 30478596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CITRIC: cold-inducible translational readthrough in the chloroplast of Chlamydomonas reinhardtii using a novel temperature-sensitive transfer RNA.
    Young R; Purton S
    Microb Cell Fact; 2018 Nov; 17(1):186. PubMed ID: 30474564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics.
    Rasala BA; Mayfield SP
    Bioeng Bugs; 2011; 2(1):50-4. PubMed ID: 21636988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production.
    Shamriz S; Ofoghi H
    Biotechnol Genet Eng Rev; 2016; 32(1-2):92-106. PubMed ID: 28359189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of xylitol by recombinant microalgae.
    Pourmir A; Noor-Mohammadi S; Johannes TW
    J Biotechnol; 2013 Jun; 165(3-4):178-83. PubMed ID: 23597921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production.
    Lauersen KJ
    Planta; 2019 Jan; 249(1):155-180. PubMed ID: 30467629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailored carbon partitioning for phototrophic production of (E)-α-bisabolene from the green microalga Chlamydomonas reinhardtii.
    Wichmann J; Baier T; Wentnagel E; Lauersen KJ; Kruse O
    Metab Eng; 2018 Jan; 45():211-222. PubMed ID: 29258965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mCherry Protein as an In Vivo Quantitative Reporter of Gene Expression in the Chloroplast of Chlamydomonas reinhardtii.
    Kim SY; Kim KW; Kwon YM; Kim JYH
    Mol Biotechnol; 2020 May; 62(5):297-305. PubMed ID: 32185599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Promoter Engineering Enables Robust Terpene Production in Microalgae.
    Einhaus A; Baier T; Rosenstengel M; Freudenberg RA; Kruse O
    ACS Synth Biol; 2021 Apr; 10(4):847-856. PubMed ID: 33764741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-rational evolution of the 3-(3-hydroxyalkanoyloxy)alkanoate (HAA) synthase RhlA to improve rhamnolipid production in Pseudomonas aeruginosa and Burkholderia glumae.
    Dulcey CE; López de Los Santos Y; Létourneau M; Déziel E; Doucet N
    FEBS J; 2019 Oct; 286(20):4036-4059. PubMed ID: 31177633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phototrophic production of heterologous diterpenoids and a hydroxy-functionalized derivative from Chlamydomonas reinhardtii.
    Lauersen KJ; Wichmann J; Baier T; Kampranis SC; Pateraki I; Møller BL; Kruse O
    Metab Eng; 2018 Sep; 49():116-127. PubMed ID: 30017797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii.
    Bertalan I; Munder MC; Weiß C; Kopf J; Fischer D; Johanningmeier U
    J Biotechnol; 2015 Feb; 195():60-6. PubMed ID: 25554634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges and advances towards the rational design of microalgal synthetic promoters in Chlamydomonas reinhardtii.
    Milito A; Aschern M; McQuillan JL; Yang JS
    J Exp Bot; 2023 Jul; 74(13):3833-3850. PubMed ID: 37025006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced carbon capture, lipid and lutein production in Chlamydomonas reinhardtii under meso-thermophilic conditions using chaperone and CRISPRi system.
    Lin JY; Ng IS
    Bioresour Technol; 2023 Sep; 384():129340. PubMed ID: 37343802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering microalgae through chloroplast transformation to produce high-value industrial products.
    Siddiqui A; Wei Z; Boehm M; Ahmad N
    Biotechnol Appl Biochem; 2020 Jan; 67(1):30-40. PubMed ID: 31538673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host.
    Scaife MA; Nguyen GTDT; Rico J; Lambert D; Helliwell KE; Smith AG
    Plant J; 2015 May; 82(3):532-546. PubMed ID: 25641561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.