These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37005623)

  • 21. Calix[4]pyrroles: highly selective stationary phases for gas chromatographic separations.
    Fan J; Wang Z; Li Q; Qi M; Shao S; Fu R
    J Chromatogr A; 2014 Oct; 1362():231-40. PubMed ID: 25173993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly(3-hexylthiophene) stationary phase for gas chromatographic separations of aliphatic and aromatic isomers.
    Peng J; Qi M
    J Chromatogr A; 2018 Sep; 1569():186-192. PubMed ID: 30031537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromatographic Separation of Aromatic Amine Isomers: A Solved Issue by a New Amphiphilic Pillar[6]arene Stationary Phase.
    Sun T; Chen R; Huang Q; Ba M; Cai Z; Hu S; Liu X; Nardiello D; Quinto M
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):56132-56142. PubMed ID: 36472861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A New Capillary Gas Chromatography Column Based on Poly(ethylene glycol) Methyl Ether-Functionalized Calix[4]arene.
    Chen R; Cai Z; Li W; Huang Q; Nardiello D; Quinto M; Liu X; Hu S; Sun T
    Chem Biodivers; 2022 Dec; 19(12):e202200829. PubMed ID: 36372775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amphiphilic triptycene-based stationary phase for high-resolution gas chromatographic separations.
    Yu L; He J; Qi M; Huang X
    J Chromatogr A; 2019 Aug; 1599():239-246. PubMed ID: 31005291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separation performance of
    Sun T; Shuai X; Chen Y; Zhao X; Song Q; Ren K; Jiang X; Hu S; Cai Z
    RSC Adv; 2019 Nov; 9(66):38486-38495. PubMed ID: 35540242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A selective and inert stationary phase combining triptycene with tocopheryl polyethylene glycol succinate for capillary gas chromatography.
    Zhao H; Qi M
    J Chromatogr A; 2021 Nov; 1657():462575. PubMed ID: 34601254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separation Performance of Capillary Gas Chromatography Based on Monohydroxycucurbit[7]Uril Incorporated Into Sol-Gels as the Stationary Phase.
    He J; Ran J; Yao J; Zhang L; Wang S; Wang Y; Dong N
    Front Chem; 2020; 8():31. PubMed ID: 32117868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cucurbit[n]urils as a new class of stationary phases for gas chromatographic separations.
    Zhang P; Qin S; Qi M; Fu R
    J Chromatogr A; 2014 Mar; 1334():139-48. PubMed ID: 24565233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amphiphilic tocopheryl polyethylene glycol succinate as gas chromatographic stationary phase for high-resolution separations of challenging isomers and analysis of lavender essential oil.
    Zhao H; Qi M
    J Sep Sci; 2021 Oct; 44(19):3600-3607. PubMed ID: 34329529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Application of gas chromatography separation based on metal-organic framework material as stationary phase].
    Tang W; Meng S; Xu M; Gu Z
    Se Pu; 2021 Jan; 39(1):57-68. PubMed ID: 34227359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-resolution separation performance of poly(caprolactone)diol for challenging isomers of xylenes, phenols and anilines by capillary gas chromatography.
    Peng J; Zhang Y; Yang X; Qi M
    J Chromatogr A; 2016 Sep; 1466():148-54. PubMed ID: 27608617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. End-modification of poly(ether-carbonate) copolymer by adamantane cages: An effective approach for improving the selectivity of gas chromatographic stationary phases.
    Sun Z; Qi M
    J Chromatogr A; 2023 Apr; 1695():463940. PubMed ID: 36990034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Triptycene-based stationary phases for gas chromatographic separations of positional isomers.
    He J; Yu L; Huang X; Qi M
    J Chromatogr A; 2019 Aug; 1599():223-230. PubMed ID: 31000208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Preparation and chromatographic characteristics of linear [60] fullerene polysiloxane stationary phase for capillary gas chromatography].
    Fan JH; Zeng ZR; Fang PF; Chen YY
    Se Pu; 1999 Nov; 17(6):529-32. PubMed ID: 12552683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance of permethyl pillar[5]arene stationary phase for high-resolution gas chromatography.
    Zhang Y; Lv Q; Qi M; Cai Z
    J Chromatogr A; 2017 May; 1496():115-121. PubMed ID: 28356191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High separation performance of carbon dioxide-based poly(ether-carbonate) copolymer for gas chromatographic analyses.
    Sun Z; Qi M
    J Chromatogr A; 2022 Oct; 1682():463493. PubMed ID: 36166885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Separation performance of guanidinium-based ionic liquids as stationary phases for gas chromatography.
    Qiao L; Lu K; Qi M; Fu R
    J Chromatogr A; 2013 Feb; 1276():112-9. PubMed ID: 23313301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploitation of a microporous organic polymer as a stationary phase for capillary gas chromatography.
    Lu C; Liu S; Xu J; Ding Y; Ouyang G
    Anal Chim Acta; 2016 Jan; 902():205-211. PubMed ID: 26703272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iptycene-based stationary phase with three-dimensional aromatic structure for highly selective separation of H-bonding analytes and aromatic isomers.
    Yang X; Han Y; Qi M; Chen C
    J Chromatogr A; 2016 May; 1445():135-9. PubMed ID: 27062717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.