These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 37006692)

  • 1. Addressing the stability challenge of photo(electro)catalysts towards solar water splitting.
    Xiao M; Wang Z; Maeda K; Liu G; Wang L
    Chem Sci; 2023 Mar; 14(13):3415-3427. PubMed ID: 37006692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instability Issues and Stabilization Strategies of Lead Halide Perovskites for Photo(electro)catalytic Solar Fuel Production.
    Chen J; Hong X; Wang Y; Guan X; Wang R; Wang Y; Du H; Zhang Y; Shen S
    J Phys Chem Lett; 2022 Feb; 13(7):1806-1824. PubMed ID: 35171612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability and Performance of Sulfide-, Nitride-, and Phosphide-Based Electrodes for Photocatalytic Solar Water Splitting.
    Su J; Wei Y; Vayssieres L
    J Phys Chem Lett; 2017 Oct; 8(20):5228-5238. PubMed ID: 28972772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review.
    Gao R; Zhu J; Yan D
    Nanoscale; 2021 Aug; 13(32):13593-13603. PubMed ID: 34477633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable Unbiased Photo-Electrochemical Overall Water Splitting Exceeding 3% Efficiency via Covalent Triazine Framework/Metal Oxide Hybrid Photoelectrodes.
    Zhang Y; Lv H; Zhang Z; Wang L; Wu X; Xu H
    Adv Mater; 2021 Apr; 33(15):e2008264. PubMed ID: 33690954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thin film photoelectrodes for solar water splitting.
    He Y; Hamann T; Wang D
    Chem Soc Rev; 2019 Apr; 48(7):2182-2215. PubMed ID: 30667004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel.
    Mohsin M; Ishaq T; Bhatti IA; Maryam ; Jilani A; Melaibari AA; Abu-Hamdeh NH
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of Photocathodes: A Review on Principles, Design, and Strategies.
    Wang Q; Liu J; Li Q; Yang J
    ChemSusChem; 2023 May; 16(9):e202202186. PubMed ID: 36789473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability and degradation of (oxy)nitride photocatalysts for solar water splitting.
    Werner V; Lora FB; Chai Z; Hörndl J; Praxmair J; Luber S; Haussener S; Pokrant S
    RSC Sustain; 2024 Jun; 2(6):1738-1752. PubMed ID: 38845685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visible-Light-Driven Overall Water Splitting.
    Morikawa T; Sato S; Sekizawa K; Arai T; Suzuki TM
    ChemSusChem; 2019 May; 12(9):1807-1824. PubMed ID: 30963707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.
    Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K
    Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts.
    Tao X; Zhao Y; Wang S; Li C; Li R
    Chem Soc Rev; 2022 May; 51(9):3561-3608. PubMed ID: 35403632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications.
    Liras M; Barawi M; de la Peña O'Shea VA
    Chem Soc Rev; 2019 Nov; 48(22):5454-5487. PubMed ID: 31608912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-Based Photocatalysts for Solar-Fuel Generation.
    Xiang Q; Cheng B; Yu J
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11350-66. PubMed ID: 26079429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges.
    Thangamuthu M; Ruan Q; Ohemeng PO; Luo B; Jing D; Godin R; Tang J
    Chem Rev; 2022 Jul; 122(13):11778-11829. PubMed ID: 35699661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge Carrier Activity on Single-Particle Photo(electro)catalysts: Toward Function in Solar Energy Conversion.
    Hesari M; Mao X; Chen P
    J Am Chem Soc; 2018 Jun; 140(22):6729-6740. PubMed ID: 29750519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.
    Zou Z; Ye J; Sayama K; Arakawa H
    Nature; 2001 Dec; 414(6864):625-7. PubMed ID: 11740556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar-driven conversion of carbon dioxide over nanostructured metal-based catalysts in alternative approaches: Fundamental mechanisms and recent progress.
    Hoang VC; Bui TS; Nguyen HTD; Hoang TT; Rahman G; Le QV; Nguyen DLT
    Environ Res; 2021 Nov; 202():111781. PubMed ID: 34333011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.