BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 37006773)

  • 1. Decarboxylative Triazolation Enables Direct Construction of Triazoles from Carboxylic Acids.
    Dang HT; Nguyen VD; Haug GC; Arman HD; Larionov OV
    JACS Au; 2023 Mar; 3(3):813-822. PubMed ID: 37006773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic decarboxylative amidosulfonation enables direct transformation of carboxylic acids to sulfonamides.
    Nguyen VT; Haug GC; Nguyen VD; Vuong NTH; Arman HD; Larionov OV
    Chem Sci; 2021 Apr; 12(18):6429-6436. PubMed ID: 34084443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acridine photocatalysis enables tricomponent direct decarboxylative amine construction.
    Sui X; Dang HT; Porey A; Trevino R; Das A; Fremin SO; Hughes WB; Thompson WT; Dhakal SK; Arman HD; Larionov OV
    Chem Sci; 2024 Jun; 15(25):9582-9590. PubMed ID: 38939159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tricomponent Decarboxysulfonylative Cross-Coupling Facilitates Direct Construction of Aryl Sulfones and Reveals a Mechanistic Dualism in the Acridine/Copper Photocatalytic System.
    Nguyen VD; Trevino R; Greco SG; Arman HD; Larionov OV
    ACS Catal; 2022 Jul; 12(14):8729-8739. PubMed ID: 36643936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal Acridine Photocatalysis Enables Direct Access to Thiols from Carboxylic Acids and Elemental Sulfur.
    Porey A; Fremin SO; Nand S; Trevino R; Hughes WB; Dhakal SK; Nguyen VD; Greco SG; Arman HD; Larionov OV
    ACS Catal; 2024 May; 14(9):6973-6980. PubMed ID: 38737399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decarboxylative Sulfinylation Enables a Direct, Metal-Free Access to Sulfoxides from Carboxylic Acids.
    Nguyen VD; Haug GC; Greco SG; Trevino R; Karki GB; Arman HD; Larionov OV
    Angew Chem Int Ed Engl; 2022 Oct; 61(43):e202210525. PubMed ID: 36006859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional group divergence and the structural basis of acridine photocatalysis revealed by direct decarboxysulfonylation.
    Nguyen VT; Haug GC; Nguyen VD; Vuong NTH; Karki GB; Arman HD; Larionov OV
    Chem Sci; 2022 Apr; 13(14):4170-4179. PubMed ID: 35440976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Conversion of Molecularly Complex (Hetero)aryl Carboxylic Acids into Alkynes for Accelerated SAR Exploration.
    Lutter FH; Jouffroy M
    Chemistry; 2021 Oct; 27(60):14816-14820. PubMed ID: 34460121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular click chemistry libraries for functional screens using a diazotizing reagent.
    Meng G; Guo T; Ma T; Zhang J; Shen Y; Sharpless KB; Dong J
    Nature; 2019 Oct; 574(7776):86-89. PubMed ID: 31578481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Road Map for the Construction of High-Valued
    Roy S; Das SK; Khatua H; Das S; Chattopadhyay B
    Acc Chem Res; 2021 Dec; 54(23):4395-4409. PubMed ID: 34761918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acridine Photocatalysis: Insights into the Mechanism and Development of a Dual-Catalytic Direct Decarboxylative Conjugate Addition.
    Dang HT; Haug GC; Nguyen VT; Vuong NTH; Nguyen VD; Arman HD; Larionov OV
    ACS Catal; 2020 Oct; 10(19):11448-11457. PubMed ID: 36636662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetically-driven reactivity of sulfinylamines enables direct conversion of carboxylic acids to sulfinamides.
    Dang HT; Porey A; Nand S; Trevino R; Manning-Lorino P; Hughes WB; Fremin SO; Thompson WT; Dhakal SK; Arman HD; Larionov OV
    Chem Sci; 2023 Nov; 14(46):13384-13391. PubMed ID: 38033883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room-temperature decarboxylative alkynylation of carboxylic acids using photoredox catalysis and EBX reagents.
    Le Vaillant F; Courant T; Waser J
    Angew Chem Int Ed Engl; 2015 Sep; 54(38):11200-4. PubMed ID: 26212356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An
    Cheng HL; Xie XH; Chen JZ; Wang Z; Chen JP
    Chem Sci; 2021 Sep; 12(35):11786-11792. PubMed ID: 34659716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decarboxylative Couplings for Late-Stage Peptide Modifications.
    Zhang MY; Malins LR
    Methods Mol Biol; 2020; 2103():275-285. PubMed ID: 31879933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Unified Approach to Decarboxylative Halogenation of (Hetero)aryl Carboxylic Acids.
    Chen TQ; Pedersen PS; Dow NW; Fayad R; Hauke CE; Rosko MC; Danilov EO; Blakemore DC; Dechert-Schmitt AM; Knauber T; Castellano FN; MacMillan DWC
    J Am Chem Soc; 2022 May; 144(18):8296-8305. PubMed ID: 35486956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascades.
    Just-Baringo X; Procter DJ
    Acc Chem Res; 2015 May; 48(5):1263-75. PubMed ID: 25871998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A General Iron-Catalyzed Decarboxylative Oxygenation of Aliphatic Carboxylic Acids.
    Denkler LM; Shekar MA; Ngan TSJ; Wylie L; Abdullin D; Hett T; Pilz FH; Kirchner B; Schiemann O; Kielb P; Bunescu A; Engeser M; Schnakenburg G
    Angew Chem Int Ed Engl; 2024 May; ():e202403292. PubMed ID: 38735849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction between Azidyl Radicals and Alkynes: A Straightforward Approach to NH-1,2,3-Triazoles.
    Hu L; Mück-Lichtenfeld C; Wang T; He G; Gao M; Zhao J
    Chemistry; 2016 Jan; 22(3):911-5. PubMed ID: 26604181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbene and photocatalyst-catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles to form ketones.
    Ren SC; Yang X; Mondal B; Mou C; Tian W; Jin Z; Chi YR
    Nat Commun; 2022 May; 13(1):2846. PubMed ID: 35606378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.