These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37006774)
41. C-dot doping for enhanced catalytic performance of TiO Liu J; Ji Y; Zhu S; Guo T; Xu L; Dong J; Cheng P Environ Sci Pollut Res Int; 2022 Jan; 29(2):2480-2492. PubMed ID: 34374012 [TBL] [Abstract][Full Text] [Related]
42. Activated char supported Fe-Ni catalyst for syngas production from catalytic gasification of pine wood. Hu J; Jia Z; Zhao S; Wang W; Zhang Q; Liu R; Huang Z Bioresour Technol; 2021 Nov; 340():125600. PubMed ID: 34325394 [TBL] [Abstract][Full Text] [Related]
43. Promising Utilization of CO Ray D; Chawdhury P; Subrahmanyam C ACS Omega; 2020 Jun; 5(23):14040-14050. PubMed ID: 32566870 [TBL] [Abstract][Full Text] [Related]
44. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts. Park HJ; Park SH; Sohn JM; Park J; Jeon JK; Kim SS; Park YK Bioresour Technol; 2010 Jan; 101 Suppl 1():S101-3. PubMed ID: 19369069 [TBL] [Abstract][Full Text] [Related]
45. Oxygen Vacancy Induced Strong Metal-Support Interactions on Ni/Ce Lin F; Chen Z; Gong H; Wang X; Chen L; Yu H Langmuir; 2023 Mar; 39(12):4495-4506. PubMed ID: 36926903 [TBL] [Abstract][Full Text] [Related]
46. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177 [TBL] [Abstract][Full Text] [Related]
47. Arming wood carbon with carbon-coated mesoporous nickel-silica nanolayer as monolithic composite catalyst for steam reforming of toluene. Xu H; Shen Z; Zhang S; Chen G; Pan H; Ge Z; Zheng Z; Wang Y; Wang Y; Li X J Colloid Interface Sci; 2021 Oct; 599():650-660. PubMed ID: 33979747 [TBL] [Abstract][Full Text] [Related]
48. Synergistic effects of Ni-Fe alloy catalysts on dry reforming of methane at low temperatures in an electric field. Motomura A; Nakaya Y; Sampson C; Higo T; Torimoto M; Tsuneki H; Furukawa S; Sekine Y RSC Adv; 2022 Oct; 12(44):28359-28363. PubMed ID: 36320534 [TBL] [Abstract][Full Text] [Related]
49. Effect of Support on Stability and Coke Resistance of Ni-Based Catalyst in Combined Steam and CO Hong Phuong P; Cam Anh H; Tri N; Phung Anh N; Cam Loc L ACS Omega; 2022 Jun; 7(23):20092-20103. PubMed ID: 35721961 [TBL] [Abstract][Full Text] [Related]
50. Influence of the presence of ruthenium on the activity and stability of Co-Mg-Al-based catalysts in CO Gennequin C; Hany S; Tidahy HL; Aouad S; Estephane J; Aboukaïs A; Abi-Aad E Environ Sci Pollut Res Int; 2016 Nov; 23(22):22744-22760. PubMed ID: 27562810 [TBL] [Abstract][Full Text] [Related]
51. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass. Li D; Tamura M; Nakagawa Y; Tomishige K Bioresour Technol; 2015 Feb; 178():53-64. PubMed ID: 25455089 [TBL] [Abstract][Full Text] [Related]
52. Torrefaction/carbonization-enhanced gasification-steam reforming of biomass for promoting hydrogen-enriched syngas production and tar elimination over gasification biochars. Kong G; Wang K; Zhang X; Li J; Han L; Zhang X Bioresour Technol; 2022 Nov; 363():127960. PubMed ID: 36113820 [TBL] [Abstract][Full Text] [Related]
53. Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO Chen C; Wang W; Ren Q; Ye R; Nie N; Liu Z; Zhang L; Xiao J Front Chem; 2022; 10():993691. PubMed ID: 36118307 [TBL] [Abstract][Full Text] [Related]
54. Investigation of nickel supported catalysts for the upgrading of brown peat derived gasification products. Sutton D; Kelleher B; Doyle A; Ross JR Bioresour Technol; 2001 Nov; 80(2):111-6. PubMed ID: 11563700 [TBL] [Abstract][Full Text] [Related]
55. Carbon Deposition Onto Ni-Based Catalysts for Combined Steam/CO2 Reforming of Methane. Li P; Park YH; Moon DJ; Park NC; Kim YC J Nanosci Nanotechnol; 2016 Feb; 16(2):1562-6. PubMed ID: 27433622 [TBL] [Abstract][Full Text] [Related]
56. Plasma-chemical promotion of catalysis for CH Sheng Z; Kim HH; Yao S; Nozaki T Phys Chem Chem Phys; 2020 Sep; 22(34):19349-19358. PubMed ID: 32822443 [TBL] [Abstract][Full Text] [Related]
57. Plasma-Catalytic CO Sun Y; Wu J; Wang Y; Li J; Wang N; Harding J; Mo S; Chen L; Chen P; Fu M; Ye D; Huang J; Tu X JACS Au; 2022 Aug; 2(8):1800-1810. PubMed ID: 36032530 [TBL] [Abstract][Full Text] [Related]
58. Steam reforming of polystyrene at a low temperature for high H Zhou H; Saad JM; Li Q; Xu Y Waste Manag; 2020 Mar; 104():42-50. PubMed ID: 31962216 [TBL] [Abstract][Full Text] [Related]
59. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability. An K; Zhang Q; Alayoglu S; Musselwhite N; Shin JY; Somorjai GA Nano Lett; 2014 Aug; 14(8):4907-12. PubMed ID: 25078630 [TBL] [Abstract][Full Text] [Related]
60. Biomass tar cracking and syngas production using rice husk char-supported nickel catalysts coupled with microwave heating. Dong Q; Li H; Zhang S; Li X; Zhong W RSC Adv; 2018 Dec; 8(71):40873-40882. PubMed ID: 35557919 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]