These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3700722)

  • 1. Postnatal changes in arborization patterns of murine retinocollicular axons.
    Sachs GM; Jacobson M; Caviness VS
    J Comp Neurol; 1986 Apr; 246(3):395-408. PubMed ID: 3700722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the crossed retinocollicular projection in the mouse.
    Edwards MA; Schneider GE; Caviness VS
    J Comp Neurol; 1986 Jun; 248(3):410-21. PubMed ID: 3722464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optic tectum of the eastern garter snake, Thamnophis sirtalis. IV. Morphology of afferents from the retina.
    Dacey DM; Ulinski PS
    J Comp Neurol; 1986 Mar; 245(3):301-18. PubMed ID: 3958248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse.
    Godement P; Salaün J; Imbert M
    J Comp Neurol; 1984 Dec; 230(4):552-75. PubMed ID: 6520251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptogenesis in the stratum griseum superficiale of the rat superior colliculus.
    Warton SS; McCart R
    Synapse; 1989; 3(2):136-48. PubMed ID: 2928962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of corticotectal synaptic terminals in the cat: a quantitative electron microscopic analysis.
    Plummer KL; Behan M
    J Comp Neurol; 1993 Dec; 338(3):458-74. PubMed ID: 8113449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine structure of the superficial layers of the viper optic tectum. A Golgi and electron-microscopic study.
    Repérant J; Peyrichoux J; Rio JP
    J Comp Neurol; 1981 Jul; 199(3):393-417. PubMed ID: 7263954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The morphology of optic tract axons arborizing in the superior colliculus of the hamster.
    Sachs GM; Schneider GE
    J Comp Neurol; 1984 Dec; 230(2):155-67. PubMed ID: 6512015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axonal arborization in the developing chick retinotectal system.
    Thanos S; Bonhoeffer F
    J Comp Neurol; 1987 Jul; 261(1):155-64. PubMed ID: 3624542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early postnatal expression of L1 by retinal fibers in the optic tract and synaptic targets of the Syrian hamster.
    Lyckman AW; Moya KL; Confaloni A; Jhaveri S
    J Comp Neurol; 2000 Jul; 423(1):40-51. PubMed ID: 10861535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient retinal axon collaterals to visual and somatosensory thalamus in neonatal hamsters.
    Langdon RB; Frost DO
    J Comp Neurol; 1991 Aug; 310(2):200-14. PubMed ID: 1955582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rules for retinotectal terminal arborizations in the goldfish optic tectum: a whole-mount study.
    Stuermer CA
    J Comp Neurol; 1984 Oct; 229(2):214-32. PubMed ID: 6501601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: effects of kainate lesions in the superior colliculus.
    Carpenter P; Sefton AJ; Dreher B; Lim WL
    J Comp Neurol; 1986 Sep; 251(2):240-59. PubMed ID: 3782500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal development of the ipsilateral retinocollicular projection and the effects of unilateral enucleation in the golden hamster.
    Insausti R; Blakemore C; Cowan WM
    J Comp Neurol; 1985 Apr; 234(3):393-409. PubMed ID: 3988992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticotectal terminals in the superior colliculus of the rabbit: a light- and electron microscopic analysis using horseradish peroxidase (HRP)-tetramethylbenzidine (TMB).
    Holländer H; Schönitzer K
    J Comp Neurol; 1983 Sep; 219(1):81-7. PubMed ID: 6619334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinotectal projection in reeler mutant mice: relationships among axon trajectories, arborization patterns and cytoarchitecture.
    Frost DO; Edwards MA; Sachs GM; Caviness VS
    Brain Res; 1986 Jul; 393(1):109-20. PubMed ID: 3730887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal development of the corticotectal projection in cats.
    Plummer KL; Behan M
    J Comp Neurol; 1992 Jan; 315(2):178-99. PubMed ID: 1372012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A light microscopic and electron microscopic study of the superficial layers of the superior colliculus of the tree shrew (Tupaia glis).
    Graham J; Casagrande VA
    J Comp Neurol; 1980 May; 191(1):133-51. PubMed ID: 7400390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axon trajectories and pattern of terminal arborization during the prenatal development of the cat's retinogeniculate pathway.
    Sretavan DW; Shatz CJ
    J Comp Neurol; 1987 Jan; 255(3):386-400. PubMed ID: 3819020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.