BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37007623)

  • 1. Micro-particle image velocimetry for blood flow in thick round glass micro-channels: Channel fabrication and velocity profile characterization.
    Chartrand C; Le AV; Fenech M
    MethodsX; 2023; 10():102110. PubMed ID: 37007623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Velocity measurement accuracy in optical microhemodynamics: experiment and simulation.
    Chayer B; L Pitts K; Cloutier G; Fenech M
    Physiol Meas; 2012 Oct; 33(10):1585-602. PubMed ID: 22945542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines.
    Lindken R; Rossi M; Grosse S; Westerweel J
    Lab Chip; 2009 Sep; 9(17):2551-67. PubMed ID: 19680579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analytic study on the effect of alginate on the velocity profiles of blood in rectangular microchannels using microparticle image velocimetry.
    Pitts KL; Fenech M
    PLoS One; 2013; 8(8):e72909. PubMed ID: 24023655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry.
    Cairone F; Ortiz D; Cabrales PJ; Intaglietta M; Bucolo M
    Microvasc Res; 2018 Mar; 116():77-86. PubMed ID: 28918110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-Based Experimental Measurement Techniques to Characterize Velocity Fields in Blood Microflows.
    Le AV; Fenech M
    Front Physiol; 2022; 13():886675. PubMed ID: 35574441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-particle image velocimetry for velocity profile measurements of micro blood flows.
    Pitts KL; Fenech M
    J Vis Exp; 2013 Apr; (74):e50314. PubMed ID: 23644696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the startup transient electrokinetic flow in rectangular channels of arbitrary dimensions, zeta potential distribution, and time-varying pressure gradient.
    Miller A; Villegas A; Diez FJ
    Electrophoresis; 2015 Mar; 36(5):692-702. PubMed ID: 25502599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Planar PIV Systems and Image Processing Tools for Lab-On-Chip Microfluidics.
    Ergin FG; Watz BB; Gade-Nielsen NF
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for simultaneously determining the zeta potentials of the channel surface and the tracer particles using microparticle image velocimetry technique.
    Yan D; Yang C; Nguyen NT; Huang X
    Electrophoresis; 2006 Feb; 27(3):620-7. PubMed ID: 16456891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of irrigation fluid flow and calculation of its velocity distribution in the anterior chamber by particle image velocimetry.
    Kaji Y; Yamashita M; Sakakibara J; Oshika T
    Graefes Arch Clin Exp Ophthalmol; 2012 Jul; 250(7):1023-7. PubMed ID: 22350059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of a computational fluid dynamics model using micro-particle image velocimetry of the irrigation flow in confluent canals.
    Rito Pereira M; Silva G; Semiao V; Silverio V; Martins JNR; Pascoal-Faria P; Alves N; Dias JR; Ginjeira A
    Int Endod J; 2022 Dec; 55(12):1394-1403. PubMed ID: 36040378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instantaneous 4D micro-particle image velocimetry (µPIV) via multifocal microscopy (MUM).
    Guastamacchia MGR; Xue R; Madi K; Pitkeathly WTE; Lee PD; Webb SED; Cartmell SH; Dalgarno PA
    Sci Rep; 2022 Nov; 12(1):18458. PubMed ID: 36323775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and Numerical Investigations on the Flow Characteristics within Hydrodynamic Entrance Regions in Microchannels.
    Li H; Huang B; Wu M
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31083496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels.
    Ha H; Nam KH; Lee SJ
    Microvasc Res; 2012 Nov; 84(3):242-8. PubMed ID: 22820216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Velocimetry in microchannels using photobleached molecular tracers: a tool to discriminate solvent velocity in flows of suspensions.
    Schembri F; Bodiguel H; Colin A
    Soft Matter; 2015 Jan; 11(1):169-78. PubMed ID: 25376855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results.
    Liu L; Zheng H; Williams L; Zhang F; Wang R; Hertzberg J; Shandas R
    Phys Med Biol; 2008 Mar; 53(5):1397-412. PubMed ID: 18296769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous imaging of blood flow dynamics and vascular remodelling during development.
    Ghaffari S; Leask RL; Jones EA
    Development; 2015 Dec; 142(23):4158-67. PubMed ID: 26443647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.