These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37007623)
81. Development of squeeze flow in mechanical heart valve: a particle image velocimetry investigation. Zhang P; Yeo JH; Hwang NH ASAIO J; 2006; 52(4):391-7. PubMed ID: 16883118 [TBL] [Abstract][Full Text] [Related]
82. Particle image velocimetry study of aorta-renal bifurcation. Haga T; Javadzadegan A; Kabir K; Simmons A; Barber T Technol Health Care; 2015; 23(5):539-45. PubMed ID: 26410115 [TBL] [Abstract][Full Text] [Related]
83. Engineering imaging: using particle image velocimetry to see physiology in a new light. Fouras A; Dusting J; Sheridan J; Kawahashi M; Hirahara H; Hourigan K Clin Exp Pharmacol Physiol; 2009 Feb; 36(2):238-47. PubMed ID: 19220330 [TBL] [Abstract][Full Text] [Related]
84. Divergence Compensatory Optical Flow Method for Blood Velocimetry. Yang Z; Yu H; Huang GP; Ludwig B J Biomech Eng; 2017 Jun; 139(6):. PubMed ID: 28418506 [TBL] [Abstract][Full Text] [Related]
85. Blood cell assisted in vivo Particle Image Velocimetry using the confocal laser scanning microscope. Choi SM; Kim WH; Côté D; Park CW; Lee H Opt Express; 2011 Feb; 19(5):4357-68. PubMed ID: 21369266 [TBL] [Abstract][Full Text] [Related]
86. Particle image velocimetry (PIV) evaluation of flow modification in aneurysm phantoms using asymmetric stents. Ionita CN; Hoi Y; Meng H; Rudin S Proc SPIE Int Soc Opt Eng; 2004; 5369():295. PubMed ID: 21572936 [TBL] [Abstract][Full Text] [Related]
87. Hydrodynamic evaluation of a new dispersive aortic cannula (Stealthflow). Goto T; Inamura T; Shirota M; Fukuda W; Fukuda I; Daitoku K; Minakawa M; Ito K J Artif Organs; 2016 Jun; 19(2):121-7. PubMed ID: 26526561 [TBL] [Abstract][Full Text] [Related]
88. Particle Image Velocimetry Investigation of Hemodynamics via Aortic Phantom. Kang J; Ha H J Vis Exp; 2022 Feb; (180):. PubMed ID: 35285828 [TBL] [Abstract][Full Text] [Related]
89. Micro particle image velocimetry measurements of steady diastolic leakage flow in the hinge of a St. Jude Medical® regent™ mechanical heart valve. Jun BH; Saikrishnan N; Yoganathan AP Ann Biomed Eng; 2014 Mar; 42(3):526-40. PubMed ID: 24085344 [TBL] [Abstract][Full Text] [Related]
90. Ghost Cell Suspensions as Blood Analogue Fluid for Macroscopic Particle Image Velocimetry Measurements. Jansen SV; Müller I; Nachtsheim M; Schmitz-Rode T; Steinseifer U Artif Organs; 2016 Feb; 40(2):207-12. PubMed ID: 25997837 [TBL] [Abstract][Full Text] [Related]
91. Flows of healthy and hardened RBC suspensions through a micropillar array. Stathoulopoulos A; Passos A; Balabani S Med Eng Phys; 2022 Sep; 107():103874. PubMed ID: 36068027 [TBL] [Abstract][Full Text] [Related]
92. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles. Lima R; Wada S; Takeda M; Tsubota K; Yamaguchi T J Biomech; 2007; 40(12):2752-7. PubMed ID: 17399723 [TBL] [Abstract][Full Text] [Related]
93. Electrokinetic flow control in microfluidic chips using a field-effect transistor. Horiuchi K; Dutta P Lab Chip; 2006 Jun; 6(6):714-23. PubMed ID: 16738721 [TBL] [Abstract][Full Text] [Related]
94. 3D printed water-soluble scaffolds for rapid production of PDMS micro-fluidic flow chambers. Dahlberg T; Stangner T; Zhang H; Wiklund K; Lundberg P; Edman L; Andersson M Sci Rep; 2018 Feb; 8(1):3372. PubMed ID: 29463819 [TBL] [Abstract][Full Text] [Related]
95. Micro-Scale Particle Tracking: From Conventional to Data-Driven Methods. Wang H; Hong L; Chamorro LP Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793202 [TBL] [Abstract][Full Text] [Related]
96. Movement characteristics of the inclined surface flow of the open channel on the nanoscale surface. Chen YC; Yang HC Heliyon; 2023 Jul; 9(7):e17677. PubMed ID: 37539161 [TBL] [Abstract][Full Text] [Related]
97. Correction: visualization of the intracavitary blood flow in systemic ventricles of Fontan patients by contrast echocardiography using particle image velocimetry. Lampropoulos K; Budts W; Van de Bruaene A; Troost E; van Melle JP Cardiovasc Ultrasound; 2012 Apr; 10():18. PubMed ID: 22537255 [No Abstract] [Full Text] [Related]
98. High spatiotemporal mapping of cortical blood flow velocity with an enhanced accuracy. Jin T; Li B; Li L; Qi W; Xi L Biomed Opt Express; 2024 Apr; 15(4):2419-2432. PubMed ID: 38633086 [TBL] [Abstract][Full Text] [Related]
99. Micro-particle image velocimetry for blood flow in thick round glass micro-channels: Channel fabrication and velocity profile characterization. Chartrand C; Le AV; Fenech M MethodsX; 2023; 10():102110. PubMed ID: 37007623 [TBL] [Abstract][Full Text] [Related]
100. Velocity measurement accuracy in optical microhemodynamics: experiment and simulation. Chayer B; L Pitts K; Cloutier G; Fenech M Physiol Meas; 2012 Oct; 33(10):1585-602. PubMed ID: 22945542 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]