These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37007624)

  • 1. Development of closed-loop active control method for suppression of thermoacoustic instability using radial air micro-jets.
    Deshmukh N; Ansari A; Kumar P; George AV; Thomas FJ; George MS
    MethodsX; 2023; 10():102123. PubMed ID: 37007624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of thermo-acoustic instabilities in horizontal Rijke tube using pulsating radial jets.
    Deshmukh NN; Ansari A; Tajir AP; Almeida CC; Shetty AS; Danie NS; Kadam SK
    MethodsX; 2023 Dec; 11():102325. PubMed ID: 37663001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental method for temperature measurement on lateral planes along a Rijke tube to assess efficacy of control method.
    Deshmukh NN; Sharma SD; Ansari A
    MethodsX; 2023; 10():102170. PubMed ID: 37091955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the secondary dynamic mode interference phenomenon in thermoacoustic instability control.
    Zalluhoglu U; Olgac N
    Proc Math Phys Eng Sci; 2016 Jul; 472(2191):20160182. PubMed ID: 27493567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrence network analysis exploring the routes to thermoacoustic instability in a Rijke tube with inverse diffusion flame.
    Bhattacharya A; De S; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2021 Mar; 31(3):033117. PubMed ID: 33810714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean-field model of synchronization for open-loop, swirl controlled thermoacoustic system.
    Singh S; Kumar Dutta A; Dhadphale JM; Roy A; Sujith RI; Chaudhuri S
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rijke tube: A nonlinear oscillator.
    Manoj K; Pawar SA; Kurths J; Sujith RI
    Chaos; 2022 Jul; 32(7):072101. PubMed ID: 35907738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitigation of limit cycle oscillations in a turbulent thermoacoustic system via delayed acoustic self-feedback.
    Sahay A; Kushwaha A; Pawar SA; P R M; Dhadphale JM; Sujith RI
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling-induced instability in a ring of thermoacoustic oscillators.
    Pedergnana T; Noiray N
    Proc Math Phys Eng Sci; 2022 Mar; 478(2259):20210851. PubMed ID: 35280328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the emergence of critical regions at the onset of thermoacoustic instability in a turbulent combustor.
    Unni VR; Krishnan A; Manikandan R; George NB; Sujith RI; Marwan N; Kurths J
    Chaos; 2018 Jun; 28(6):063125. PubMed ID: 29960406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigating self-excited flame pulsating and thermoacoustic oscillations using perforated liners.
    Zhao D; Gutmark E; Reinecke A
    Sci Bull (Beijing); 2019 Jul; 64(13):941-952. PubMed ID: 36659759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate-dependent tipping and early warning in a thermoacoustic system under extreme operating environment.
    Zhang X; Xu Y; Liu Q; Kurths J; Grebogi C
    Chaos; 2021 Nov; 31(11):113115. PubMed ID: 34881611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor.
    Kasthuri P; Pavithran I; Pawar SA; Sujith RI; Gejji R; Anderson W
    Chaos; 2019 Oct; 29(10):103115. PubMed ID: 31675825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal patterns corresponding to phase synchronization and generalized synchronization states of thermoacoustic instability.
    Pawar SA; Raghunath MP; K Valappil R; Krishnan A; Manoj K; Sujith RI
    Chaos; 2024 May; 34(5):. PubMed ID: 38717395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal dynamics and early detection of thermoacoustic combustion instability in a model rocket combustor.
    Hashimoto T; Shibuya H; Gotoda H; Ohmichi Y; Matsuyama S
    Phys Rev E; 2019 Mar; 99(3-1):032208. PubMed ID: 30999467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural ODE to model and prognose thermoacoustic instability.
    Dhadphale JM; Unni VR; Saha A; Sujith RI
    Chaos; 2022 Jan; 32(1):013131. PubMed ID: 35105133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillation quenching and phase-flip bifurcation in coupled thermoacoustic systems.
    Dange S; Manoj K; Banerjee S; Pawar SA; Mondal S; Sujith RI
    Chaos; 2019 Sep; 29(9):093135. PubMed ID: 31575137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preventing a global transition to thermoacoustic instability by targeting local dynamics.
    George NB; Raghunathan M; Unni VR; Sujith RI; Kurths J; Surovyatkina E
    Sci Rep; 2022 Jun; 12(1):9305. PubMed ID: 35661119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recurrence networks to study dynamical transitions in a turbulent combustor.
    Godavarthi V; Unni VR; Gopalakrishnan EA; Sujith RI
    Chaos; 2017 Jun; 27(6):063113. PubMed ID: 28679226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuation behavior of thermoacoustic combustion instability analyzed by a complex-network- and synchronization-based approach.
    Murayama S; Gotoda H
    Phys Rev E; 2019 May; 99(5-1):052222. PubMed ID: 31212465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.