These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 37007742)

  • 1. Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study.
    Huang Y; Zhu T; Zhang X; Li W; Zheng X; Cheng M; Ji F; Zhang L; Yang C; Wu Z; Ye G; Lin Y; Wang K
    EClinicalMedicine; 2023 Apr; 58():101899. PubMed ID: 37007742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: A multicentre, retrospective cohort study.
    Liu Y; Wang Y; Wang Y; Xie Y; Cui Y; Feng S; Yao M; Qiu B; Shen W; Chen D; Du G; Chen X; Liu Z; Li Z; Yang X; Liang C; Wu L
    EClinicalMedicine; 2022 Oct; 52():101562. PubMed ID: 35928032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.
    Huang Y; Wei L; Hu Y; Shao N; Lin Y; He S; Shi H; Zhang X; Lin Y
    Front Oncol; 2021; 11():706733. PubMed ID: 34490107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Tumor Shrinkage Pattern to Neoadjuvant Chemotherapy Using a Multiparametric MRI-Based Machine Learning Model in Patients With Breast Cancer.
    Huang Y; Chen W; Zhang X; He S; Shao N; Shi H; Lin Z; Wu X; Li T; Lin H; Lin Y
    Front Bioeng Biotechnol; 2021; 9():662749. PubMed ID: 34295877
    [No Abstract]   [Full Text] [Related]  

  • 5. A non-invasive artificial intelligence model for identifying axillary pathological complete response to neoadjuvant chemotherapy in breast cancer: a secondary analysis to multicenter clinical trial.
    Zhu T; Huang YH; Li W; Wu CG; Zhang YM; Zheng XX; Zhang TF; Lin YY; Liu ZY; Ye GL; Lin Y; Wu ZY; Wang K
    Br J Cancer; 2024 Sep; 131(4):692-701. PubMed ID: 38918556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study.
    Gu J; Tong T; Xu D; Cheng F; Fang C; He C; Wang J; Wang B; Yang X; Wang K; Tian J; Jiang T
    Cancer; 2023 Feb; 129(3):356-366. PubMed ID: 36401611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Value of radiomics based on CE-MRI for predicting the efficacy of neoadjuvant chemotherapy in invasive breast cancer.
    Li Q; Huang Y; Xiao Q; Duan S; Wang S; Li J; Niu Q; Gu Y
    Br J Radiol; 2022 Oct; 95(1139):20220186. PubMed ID: 36005646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy.
    Sutton EJ; Onishi N; Fehr DA; Dashevsky BZ; Sadinski M; Pinker K; Martinez DF; Brogi E; Braunstein L; Razavi P; El-Tamer M; Sacchini V; Deasy JO; Morris EA; Veeraraghavan H
    Breast Cancer Res; 2020 May; 22(1):57. PubMed ID: 32466777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI Predicts Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy.
    Guo L; Du S; Gao S; Zhao R; Huang G; Jin F; Teng Y; Zhang L
    Cancers (Basel); 2022 Jul; 14(14):. PubMed ID: 35884576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer.
    Bitencourt AGV; Gibbs P; Rossi Saccarelli C; Daimiel I; Lo Gullo R; Fox MJ; Thakur S; Pinker K; Morris EA; Morrow M; Jochelson MS
    EBioMedicine; 2020 Nov; 61():103042. PubMed ID: 33039708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy.
    Ma M; Gan L; Liu Y; Jiang Y; Xin L; Liu Y; Qin N; Cheng Y; Liu Q; Xu L; Zhang Y; Wang X; Zhang X; Ye J; Wang X
    Eur J Radiol; 2022 Jan; 146():110095. PubMed ID: 34890936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning radiomic analysis of DCE-MRI combined with clinical characteristics predicts pathological complete response to neoadjuvant chemotherapy in breast cancer.
    Li Y; Fan Y; Xu D; Li Y; Zhong Z; Pan H; Huang B; Xie X; Yang Y; Liu B
    Front Oncol; 2022; 12():1041142. PubMed ID: 36686755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI.
    Braman NM; Etesami M; Prasanna P; Dubchuk C; Gilmore H; Tiwari P; Plecha D; Madabhushi A
    Breast Cancer Res; 2017 May; 19(1):57. PubMed ID: 28521821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer.
    Jiang M; Li CL; Luo XM; Chuan ZR; Lv WZ; Li X; Cui XW; Dietrich CF
    Eur J Cancer; 2021 Apr; 147():95-105. PubMed ID: 33639324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of an Interpretable Machine Learning Prediction Model for Total Pathological Complete Response after Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer: Multicenter Retrospective Analysis.
    Zhang Z; Cao B; Wu J; Feng C
    J Cancer; 2024; 15(15):5058-5071. PubMed ID: 39132160
    [No Abstract]   [Full Text] [Related]  

  • 17. Impact of tumour stroma-immune interactions on survival prognosis and response to neoadjuvant chemotherapy in bladder cancer.
    Liu L; Xu L; Wu D; Zhu Y; Li X; Xu C; Chen K; Lin Y; Lao J; Cai P; Li X; Luo Y; Li X; Huang J; Lin T; Zhong W
    EBioMedicine; 2024 Jun; 104():105152. PubMed ID: 38728838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method.
    Qu YH; Zhu HT; Cao K; Li XT; Ye M; Sun YS
    Thorac Cancer; 2020 Mar; 11(3):651-658. PubMed ID: 31944571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate classification of pulmonary nodules by a combined model of clinical, imaging, and cell-free DNA methylation biomarkers: a model development and external validation study.
    He J; Wang B; Tao J; Liu Q; Peng M; Xiong S; Li J; Cheng B; Li C; Jiang S; Qiu X; Yang Y; Ye Z; Zeng F; Zhang J; Liu D; Li W; Chen Z; Zeng Q; Fan JB; Liang W
    Lancet Digit Health; 2023 Oct; 5(10):e647-e656. PubMed ID: 37567793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI Radiomics for Assessment of Molecular Subtype, Pathological Complete Response, and Residual Cancer Burden in Breast Cancer Patients Treated With Neoadjuvant Chemotherapy.
    Choudhery S; Gomez-Cardona D; Favazza CP; Hoskin TL; Haddad TC; Goetz MP; Boughey JC
    Acad Radiol; 2022 Jan; 29 Suppl 1(Suppl 1):S145-S154. PubMed ID: 33160859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.