BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37008407)

  • 21. Lithium-Rich Rock Salt Type Sulfides-Selenides (Li
    Celasun Y; Colin JF; Martinet S; Benayad A; Peralta D
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Low-Cost and Environmentally Friendly Mixed Polyanionic Cathode for Sodium-Ion Storage.
    Song T; Yao W; Kiadkhunthod P; Zheng Y; Wu N; Zhou X; Tunmee S; Sattayaporn S; Tang Y
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):740-745. PubMed ID: 31591806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Feasible Dual Modification Strategy of Internal Anion Redox Chemistry and Surface Engineering on P2 Layer-Structured Cathodes in Sodium-Ion Batteries.
    Wang D; Zhu C; Liu Y; Hu C; Yang H; Li Z; Chen T; Zhong B; Wu Z; Guo X
    ACS Appl Mater Interfaces; 2024 May; 16(19):24442-24452. PubMed ID: 38710507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suppressing the Voltage Decay Based on a Distinct Stacking Sequence of Oxygen Atoms for Li-Rich Cathode Materials.
    Cao S; Wu C; Xie X; Li H; Zang Z; Li Z; Chen G; Guo X; Wang X
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17639-17648. PubMed ID: 33825459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ion-Migration Mechanism: An Overall Understanding of Anionic Redox Activity in Metal Oxide Cathodes of Li/Na-Ion Batteries.
    Lai Y; Xie H; Li P; Li B; Zhao A; Luo L; Jiang Z; Fang Y; Chen S; Ai X; Xia D; Cao Y
    Adv Mater; 2022 Nov; 34(47):e2206039. PubMed ID: 36165216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A redox-active metal-organic compound for lithium/sodium-based dual-ion batteries.
    Wang H; Wu Q; Wang Y; Lv X; Wang HG
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1024-1030. PubMed ID: 34487925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Challenges and Recent Advances in High Capacity Li-Rich Cathode Materials for High Energy Density Lithium-Ion Batteries.
    He W; Guo W; Wu H; Lin L; Liu Q; Han X; Xie Q; Liu P; Zheng H; Wang L; Yu X; Peng DL
    Adv Mater; 2021 Dec; 33(50):e2005937. PubMed ID: 33772921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiscale Deficiency Integration by Na-Rich Engineering for High-Stability Li-Rich Layered Oxide Cathodes.
    Liu Q; Xie T; Xie Q; He W; Zhang Y; Zheng H; Lu X; Wei W; Sa B; Wang L; Peng DL
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8239-8248. PubMed ID: 33555872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode.
    Lin K; Xu X; Qin X; Liu M; Zhao L; Yang Z; Liu Q; Ye Y; Chen G; Kang F; Li B
    Nanomicro Lett; 2022 Jul; 14(1):149. PubMed ID: 35869171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic structure engineering on NiSe
    Shi M; Li T; Shang H; Huang T; Miao Y; Zhang C; Qi J; Wei F; Xiao B; Xu H; Xue X; Sui Y
    J Colloid Interface Sci; 2023 Sep; 645():850-859. PubMed ID: 37178562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pseudocapacitance-Enhanced Storage Kinetics of 3D Anhydrous Iron (III) Fluoride as a Cathode for Li/Na-Ion Batteries.
    Zhang T; Liu Y; Chen G; Liu H; Han Y; Zhai S; Zhang L; Pan Y; Li Q; Li Q
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAlF
    Zhao S; Sun B; Yan K; Zhang J; Wang C; Wang G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33260-33268. PubMed ID: 30188678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lithium Storage Mechanism: A Review of Perylene Diimide N-Substituted with a 1,2,4-Triazol-3-yl Ring for Organic Cathode Materials.
    Seong H; Nam W; Moon JH; Kim G; Jin Y; Yoo H; Jung T; Myung Y; Lee K; Choi J
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58451-58461. PubMed ID: 38051908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new high-energy cathode for a Na-ion battery with ultrahigh stability.
    Park YU; Seo DH; Kwon HS; Kim B; Kim J; Kim H; Kim I; Yoo HI; Kang K
    J Am Chem Soc; 2013 Sep; 135(37):13870-8. PubMed ID: 23952799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rechargeable Aqueous Aluminum Organic Batteries.
    Chen J; Zhu Q; Jiang L; Liu R; Yang Y; Tang M; Wang J; Wang H; Guo L
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5794-5799. PubMed ID: 33314518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of Exact Transition between Cationic and Anionic Redox Activities in Cathode Material Li
    Zheng J; Teng G; Yang J; Xu M; Yao Q; Zhuo Z; Yang W; Liu Q; Pan F
    J Phys Chem Lett; 2018 Nov; 9(21):6262-6268. PubMed ID: 30336046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rechargeable Mg-Na and Mg-K hybrid batteries based on a low-defect Co
    Chen D; Chen Z; Xu F
    Phys Chem Chem Phys; 2021 Aug; 23(32):17530-17535. PubMed ID: 34368820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.