These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 3700855)
1. Standing wave patterns in the human ear canal used for estimation of acoustic energy reflectance at the eardrum. Lawton BW; Stinson MR J Acoust Soc Am; 1986 Apr; 79(4):1003-9. PubMed ID: 3700855 [TBL] [Abstract][Full Text] [Related]
2. Revision of estimates of acoustic energy reflectance at the human eardrum. Stinson MR J Acoust Soc Am; 1990 Oct; 88(4):1773-8. PubMed ID: 2262633 [TBL] [Abstract][Full Text] [Related]
3. Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal. Stinson MR; Shaw EA; Lawton BW J Acoust Soc Am; 1982 Sep; 72(3):766-73. PubMed ID: 7130535 [TBL] [Abstract][Full Text] [Related]
4. Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz. Ravicz ME; Olson ES; Rosowski JJ J Acoust Soc Am; 2007 Oct; 122(4):2154-73. PubMed ID: 17902852 [TBL] [Abstract][Full Text] [Related]
5. Measurement of acoustic impedance and reflectance in the human ear canal. Voss SE; Allen JB J Acoust Soc Am; 1994 Jan; 95(1):372-84. PubMed ID: 8120248 [TBL] [Abstract][Full Text] [Related]
6. Estimation of eardrum acoustic pressure and of ear canal length from remote points in the canal. Chan JC; Geisler CD J Acoust Soc Am; 1990 Mar; 87(3):1237-47. PubMed ID: 2324390 [TBL] [Abstract][Full Text] [Related]
7. Measurement of the acoustic input immittance of the human ear. Rabinowitz WM J Acoust Soc Am; 1981 Oct; 70(4):1025-35. PubMed ID: 7288039 [TBL] [Abstract][Full Text] [Related]
8. Using average correction factors to improve the estimated sound pressure level near the tympanic membrane. LaRae Recker K; Zhang T; Lin W J Am Acad Audiol; 2012 Oct; 23(9):733-50. PubMed ID: 23072965 [TBL] [Abstract][Full Text] [Related]
9. Sound propagation in the ear canal and coupling to the eardrum, with measurements on model systems. Stinson MR; Khanna SM J Acoust Soc Am; 1989 Jun; 85(6):2481-91. PubMed ID: 2745873 [TBL] [Abstract][Full Text] [Related]
10. A new method to estimate sound energy entering the middle ear. Chen S; Deng J; Bian L; Li G Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():29-32. PubMed ID: 24109616 [TBL] [Abstract][Full Text] [Related]
11. Effects of Tympanic Membrane Electrodes on Sound Transmission From the Ear Canal to the Middle and Inner Ears. Hannon C; Lewis JD Ear Hear; 2024 Nov-Dec 01; 45(6):1396-1405. PubMed ID: 38764148 [TBL] [Abstract][Full Text] [Related]
12. Acoustic intensity, impedance and reflection coefficient in the human ear canal. Farmer-Fedor BL; Rabbitt RD J Acoust Soc Am; 2002 Aug; 112(2):600-20. PubMed ID: 12186041 [TBL] [Abstract][Full Text] [Related]
13. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults. Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835 [TBL] [Abstract][Full Text] [Related]