These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37008648)

  • 1. Critical brain wave dynamics of neuronal avalanches.
    Galinsky VL; Frank LR
    Front Phys; 2023; 11():. PubMed ID: 37008648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?
    Galinsky VL; Frank LR
    Front Phys (Beijing); 2023 Aug; 18(4):. PubMed ID: 37008280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical analyses support power law distributions found in neuronal avalanches.
    Klaus A; Yu S; Plenz D
    PLoS One; 2011; 6(5):e19779. PubMed ID: 21720544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws.
    Palva JM; Zhigalov A; Hirvonen J; Korhonen O; Linkenkaer-Hansen K; Palva S
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3585-90. PubMed ID: 23401536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The scale-invariant, temporal profile of neuronal avalanches in relation to cortical γ-oscillations.
    Miller SR; Yu S; Plenz D
    Sci Rep; 2019 Nov; 9(1):16403. PubMed ID: 31712632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal theory of brain waves: from linear loops to nonlinear synchronized spiking and collective brain rhythms.
    Galinsky VL; Frank LR
    Phys Rev Res; 2020; 2(2):. PubMed ID: 33718881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical Evaluation of Waveform Collapse Reveals Scale-Free Properties of Neuronal Avalanches.
    Shaukat A; Thivierge JP
    Front Comput Neurosci; 2016; 10():29. PubMed ID: 27092071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike avalanches exhibit universal dynamics across the sleep-wake cycle.
    Ribeiro TL; Copelli M; Caixeta F; Belchior H; Chialvo DR; Nicolelis MA; Ribeiro S
    PLoS One; 2010 Nov; 5(11):e14129. PubMed ID: 21152422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal avalanches and time-frequency representations in stimulus-evoked activity.
    Arviv O; Goldstein A; Shriki O
    Sci Rep; 2019 Sep; 9(1):13319. PubMed ID: 31527749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal avalanches in the resting MEG of the human brain.
    Shriki O; Alstott J; Carver F; Holroyd T; Henson RN; Smith ML; Coppola R; Bullmore E; Plenz D
    J Neurosci; 2013 Apr; 33(16):7079-90. PubMed ID: 23595765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship of fast- and slow-timescale neuronal dynamics in human MEG and SEEG.
    Zhigalov A; Arnulfo G; Nobili L; Palva S; Palva JM
    J Neurosci; 2015 Apr; 35(13):5385-96. PubMed ID: 25834062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hopf Bifurcation in Mean Field Explains Critical Avalanches in Excitation-Inhibition Balanced Neuronal Networks: A Mechanism for Multiscale Variability.
    Liang J; Zhou T; Zhou C
    Front Syst Neurosci; 2020; 14():580011. PubMed ID: 33324179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep.
    Dehghani N; Hatsopoulos NG; Haga ZD; Parker RA; Greger B; Halgren E; Cash SS; Destexhe A
    Front Physiol; 2012; 3():302. PubMed ID: 22934053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain Waves: Emergence of Localized, Persistent, Weakly Evanescent Cortical Loops.
    Galinsky VL; Frank LR
    J Cogn Neurosci; 2020 Nov; 32(11):2178-2202. PubMed ID: 32692294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avalanches during epithelial tissue growth; Uniform Growth and a drosophila eye disc model.
    Courcoubetis G; Xu C; Nuzhdin SV; Haas S
    PLoS Comput Biol; 2022 Mar; 18(3):e1009952. PubMed ID: 35303738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal avalanches in neocortical circuits.
    Beggs JM; Plenz D
    J Neurosci; 2003 Dec; 23(35):11167-77. PubMed ID: 14657176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal organization of resting brain activity at the thermodynamic critical point.
    Yu S; Yang H; Shriki O; Plenz D
    Front Syst Neurosci; 2013; 7():42. PubMed ID: 23986660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avalanches in a stochastic model of spiking neurons.
    Benayoun M; Cowan JD; van Drongelen W; Wallace E
    PLoS Comput Biol; 2010 Jul; 6(7):e1000846. PubMed ID: 20628615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balance of excitation and inhibition determines 1/f power spectrum in neuronal networks.
    Lombardi F; Herrmann HJ; de Arcangelis L
    Chaos; 2017 Apr; 27(4):047402. PubMed ID: 28456161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Landau-Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization.
    di Santo S; Villegas P; Burioni R; Muñoz MA
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1356-E1365. PubMed ID: 29378970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.