These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Dynamic Control of Functional Coacervates in Synthetic Cells. Nair KS; Radhakrishnan S; Bajaj H ACS Synth Biol; 2023 Jul; 12(7):2168-2177. PubMed ID: 37337618 [TBL] [Abstract][Full Text] [Related]
6. Membranized Coacervate Microdroplets: from Versatile Protocell Models to Cytomimetic Materials. Gao N; Mann S Acc Chem Res; 2023 Feb; 56(3):297-307. PubMed ID: 36625520 [TBL] [Abstract][Full Text] [Related]
7. Biomolecular Chemistry in Liquid Phase Separated Compartments. Nakashima KK; Vibhute MA; Spruijt E Front Mol Biosci; 2019; 6():21. PubMed ID: 31001538 [TBL] [Abstract][Full Text] [Related]
8. Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes. Abbas M; Law JO; Grellscheid SN; Huck WTS; Spruijt E Adv Mater; 2022 Aug; 34(34):e2202913. PubMed ID: 35796384 [TBL] [Abstract][Full Text] [Related]
9. Complex coacervates as artificial membraneless organelles and protocells. Deng NN Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586 [TBL] [Abstract][Full Text] [Related]
10. Phospholipid Membrane Formation Templated by Coacervate Droplets. Pir Cakmak F; Marianelli AM; Keating CD Langmuir; 2021 Aug; 37(34):10366-10375. PubMed ID: 34398617 [TBL] [Abstract][Full Text] [Related]
11. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications. Wang Z; Zhang M; Zhou Y; Zhang Y; Wang K; Liu J Small Methods; 2023 Dec; 7(12):e2300042. PubMed ID: 36908048 [TBL] [Abstract][Full Text] [Related]
12. Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition. Kojima T; Takayama S ACS Appl Mater Interfaces; 2018 Sep; 10(38):32782-32791. PubMed ID: 30179001 [TBL] [Abstract][Full Text] [Related]
13. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments. Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602 [TBL] [Abstract][Full Text] [Related]
14. Self-programmed enzyme phase separation and multiphase coacervate droplet organization. Karoui H; Seck MJ; Martin N Chem Sci; 2021 Jan; 12(8):2794-2802. PubMed ID: 34164043 [TBL] [Abstract][Full Text] [Related]
16. Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells. Gaur D; Dubey NC; Tripathi BP Adv Colloid Interface Sci; 2022 Jan; 299():102566. PubMed ID: 34864354 [TBL] [Abstract][Full Text] [Related]
17. pH-Controlled Coacervate-Membrane Interactions within Liposomes. Last MGF; Deshpande S; Dekker C ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914 [TBL] [Abstract][Full Text] [Related]
18. Biofunctional coacervate-based artificial protocells with membrane-like and cytoplasm-like structures for the treatment of persistent hyperuricemia. Hu Q; Lan H; Tian Y; Li X; Wang M; Zhang J; Yu Y; Chen W; Kong L; Guo Y; Zhang Z J Control Release; 2024 Jan; 365():176-192. PubMed ID: 37992873 [TBL] [Abstract][Full Text] [Related]
19. Artificial Cells: Synthetic Compartments with Life-like Functionality and Adaptivity. Buddingh' BC; van Hest JCM Acc Chem Res; 2017 Apr; 50(4):769-777. PubMed ID: 28094501 [TBL] [Abstract][Full Text] [Related]
20. Giant Coacervate Vesicles As an Integrated Approach to Cytomimetic Modeling. Zhang Y; Chen Y; Yang X; He X; Li M; Liu S; Wang K; Liu J; Mann S J Am Chem Soc; 2021 Feb; 143(7):2866-2874. PubMed ID: 33566601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]