These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37009637)

  • 1. Iterative transfer learning for automatic collective motion tuning on multiple robot platforms.
    Abpeikar S; Kasmarik K; Garratt M
    Front Neurorobot; 2023; 17():1113991. PubMed ID: 37009637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Two Teraflop Swarm.
    Jones S; Studley M; Hauert S; Winfield AFT
    Front Robot AI; 2018; 5():11. PubMed ID: 33500898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning.
    Chen G; Yao S; Ma J; Pan L; Chen Y; Xu P; Ji J; Chen X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning.
    Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H
    IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guided Stochastic Optimization for Motion Planning.
    Magyar B; Tsiogkas N; Brito B; Patel M; Lane D; Wang S
    Front Robot AI; 2019; 6():105. PubMed ID: 33501120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning.
    Hua J; Zeng L; Li G; Ju Z
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on deep reinforcement learning basketball robot shooting skills improvement based on end to end architecture and multi-modal perception.
    Zhang J; Tao D
    Front Neurorobot; 2023; 17():1274543. PubMed ID: 37908406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Channel Interactive Reinforcement Learning for Sequential Tasks.
    Koert D; Kircher M; Salikutluk V; D'Eramo C; Peters J
    Front Robot AI; 2020; 7():97. PubMed ID: 33501264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-modal self-attention mechanism for controlling robot volleyball motion.
    Wang M; Liang Z
    Front Neurorobot; 2023; 17():1288463. PubMed ID: 38023451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ó; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging Expert Demonstration Features for Deep Reinforcement Learning in Floor Cleaning Robot Navigation.
    Cimurs R; Merchán-Cruz EA
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From the Dexterous Surgical Skill to the Battlefield-A Robotics Exploratory Study.
    Gonzalez GT; Kaur U; Rahman M; Venkatesh V; Sanchez N; Hager G; Xue Y; Voyles R; Wachs J
    Mil Med; 2021 Jan; 186(Suppl 1):288-294. PubMed ID: 33499518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent trends in robot learning and evolution for swarm robotics.
    Kuckling J
    Front Robot AI; 2023; 10():1134841. PubMed ID: 37168882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent design of control software and configuration of hardware for robot swarms under economic constraints.
    Salman M; Ligot A; Birattari M
    PeerJ Comput Sci; 2019; 5():e221. PubMed ID: 33816874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement Learning-Based Complete Area Coverage Path Planning for a Modified hTrihex Robot.
    Apuroop KGS; Le AV; Elara MR; Sheu BJ
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hybrid bio-robotic swarm as a powerful tool for collective motion research: a perspective.
    Ayali A; Kaminka GA
    Front Neurorobot; 2023; 17():1215085. PubMed ID: 37520677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Survey of Sim-to-Real Transfer Techniques Applied to Reinforcement Learning for Bioinspired Robots.
    Zhu W; Guo X; Owaki D; Kutsuzawa K; Hayashibe M
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3444-3459. PubMed ID: 34587101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey.
    Orr J; Dutta A
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.