These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37009676)

  • 1. Molecular design of a highly matched and bonded interface achieves enhanced thermal boundary conductance.
    Wang S; Ren L; Han M; Zhou W; Wong C; Bai X; Sun R; Zeng X
    Nanoscale; 2023 May; 15(19):8706-8715. PubMed ID: 37009676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of vibrational properties and electron-phonon coupling on thermal transport across metal-dielectric interfaces with ultrathin metallic interlayers.
    Oommen SM; Fallarino L; Heinze J; Hellwig O; Pisana S
    J Phys Condens Matter; 2022 Sep; 34(46):. PubMed ID: 36108621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weaker bonding can give larger thermal conductance at highly mismatched interfaces.
    Xu B; Hu S; Hung SW; Shao C; Chandra H; Chen FR; Kodama T; Shiomi J
    Sci Adv; 2021 Apr; 7(17):. PubMed ID: 33893088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the electron-phonon coupling in tuning the thermal boundary conductance at metal-dielectric interfaces by inserting ultrathin metal interlayers.
    Oommen SM; Pisana S
    J Phys Condens Matter; 2021 Feb; 33(8):085702. PubMed ID: 33207329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying Interfacial Bonding Using Thermal Boundary Conductance at Cubic Boron Nitride/Copper Interfaces with a Large Mismatch of Phonon Density of States.
    Chen N; Yang K; Wang Z; Zhong B; Wang J; Song J; Li Q; Ni J; Sun F; Liu Y; Fan T
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34132-34144. PubMed ID: 37405384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental observation of localized interfacial phonon modes.
    Cheng Z; Li R; Yan X; Jernigan G; Shi J; Liao ME; Hines NJ; Gadre CA; Idrobo JC; Lee E; Hobart KD; Goorsky MS; Pan X; Luo T; Graham S
    Nat Commun; 2021 Nov; 12(1):6901. PubMed ID: 34824284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization.
    Hopkins PE; Baraket M; Barnat EV; Beechem TE; Kearney SP; Duda JC; Robinson JT; Walton SG
    Nano Lett; 2012 Feb; 12(2):590-5. PubMed ID: 22214512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces.
    Lombard J; Detcheverry F; Merabia S
    J Phys Condens Matter; 2015 Jan; 27(1):015007. PubMed ID: 25425559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Thermal Boundary Conductance of Graphite-Metal Interface by Triazine-Based Molecular Bonding.
    Ota A; Ohnishi M; Oshima H; Shiga T; Kodama T; Shiomi J
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37295-37301. PubMed ID: 31525013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulated Thermal Boundary Conductance between Copper and Diamond through Nanoscale Interfacial Rough Structures.
    Wang Z; Sun F; Liu Z; Zheng L; Wang D; Feng Y
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16162-16176. PubMed ID: 36924078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of interfacial thermal conductance between metal and semiconductor.
    Wu K; Zhang L; Wang D; Li F; Zhang P; Sang L; Liao M; Tang K; Ye J; Gu S
    Sci Rep; 2022 Nov; 12(1):19907. PubMed ID: 36402811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Mapping of Thermal Boundary Conductance at Metal-Molybdenum Diselenide Interfaces.
    Brown DB; Shen W; Li X; Xiao K; Geohegan DB; Kumar S
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14418-14426. PubMed ID: 30896146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrigendum: Role of the electron-phonon coupling in tuning the thermal boundary conductance at metal-dielectric interfaces by inserting ultrathin metal interlayers (2021
    Oommen SM; Pisana S
    J Phys Condens Matter; 2021 Jun; 33(30):. PubMed ID: 33477117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance.
    Zhang L; Liu L
    Nanoscale; 2019 Feb; 11(8):3656-3664. PubMed ID: 30741290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Thermal Boundary Conductance across Bonded Heterogeneous GaN-SiC Interfaces.
    Mu F; Cheng Z; Shi J; Shin S; Xu B; Shiomi J; Graham S; Suga T
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33428-33434. PubMed ID: 31408316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Thermal Boundary Conductance across GaN/SiC Interfaces with AlN Transition Layers.
    Li R; Hussain K; Liao ME; Huynh K; Hoque MSB; Wyant S; Koh YR; Xu Z; Wang Y; Luccioni DP; Cheng Z; Shi J; Lee E; Graham S; Henry A; Hopkins PE; Goorsky MS; Khan MA; Luo T
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):8109-8118. PubMed ID: 38315970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties for Thermally Conductive Interfaces with Wide Band Gap Materials.
    Khan S; Angeles F; Wright J; Vishwakarma S; Ortiz VH; Guzman E; Kargar F; Balandin AA; Smith DJ; Jena D; Xing HG; Wilson R
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36178-36188. PubMed ID: 35895030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Thermal Conductance across Vertically Stacked Two-Dimensional van der Waals Materials
    Yuan W; Ueji K; Yagi T; Endo T; Lim HE; Miyata Y; Yomogida Y; Yanagi K
    ACS Nano; 2021 Oct; 15(10):15902-15909. PubMed ID: 34585910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic Thermal Boundary Resistance across 2D Black Phosphorus: Experiment and Atomistic Modeling of Interfacial Energy Transport.
    Li M; Kang JS; Nguyen HD; Wu H; Aoki T; Hu Y
    Adv Mater; 2019 Aug; 31(33):e1901021. PubMed ID: 31231881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.