BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 370097)

  • 1. In vitro incorporation of molybdate into demolybdoproteins in Escherichia coli.
    Scott RH; Sperl GT; DeMoss JA
    J Bacteriol; 1979 Feb; 137(2):719-26. PubMed ID: 370097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of the formate-nitrate electron transport pathway from inactive components in Escherichia coli.
    Scott RH; DeMoss JA
    J Bacteriol; 1976 Apr; 126(1):478-86. PubMed ID: 770433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. chlD gene function in molybdate activation of nitrate reductase.
    Sperl GT; DeMoss JA
    J Bacteriol; 1975 Jun; 122(3):1230-8. PubMed ID: 1097396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of reduced pyridine nucleotides and tungstate on the in vitro insertion of molybdenum into demolybdo-nitrate reductase of Chlorella vulgaris.
    Shen TC; Ramadoss CS; Vennesland B
    Biochim Biophys Acta; 1982 Jun; 704(2):227-34. PubMed ID: 7201857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of molybdenum and tungsten on induction of nitrate reductase and formate dehydrogenase in wild type and mutant Paracoccus denitrificans.
    Burke KA; Calder K; Lascelles J
    Arch Microbiol; 1980 Jun; 126(2):155-9. PubMed ID: 7192082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the molybdenum cofactor in chlorate-resistant mutants of Escherichia coli.
    Amy NK
    J Bacteriol; 1981 Oct; 148(1):274-82. PubMed ID: 7026535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A common pathway for the activation of several molybdoenzymes in Escherichia coli K12.
    Giordano G; Violet M; Medani CL; Pommier J
    Biochim Biophys Acta; 1984 Apr; 798(2):216-25. PubMed ID: 6370312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation of molybdoenzyme synthesis in Escherichia coli in response to molybdenum: ModE-molybdate, a repressor of the modABCD (molybdate transport) operon is a secondary transcriptional activator for the hyc and nar operons.
    Self WT; Grunden AM; Hasona A; Shanmugam KT
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():41-55. PubMed ID: 10206709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molybdenum-sensitive transcriptional regulation of the chlD locus of Escherichia coli.
    Miller JB; Scott DJ; Amy NK
    J Bacteriol; 1987 May; 169(5):1853-60. PubMed ID: 3106322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of the periplasmic nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in tungsten-supplemented media.
    Gates AJ; Hughes RO; Sharp SR; Millington PD; Nilavongse A; Cole JA; Leach ER; Jepson B; Richardson DJ; Butler CS
    FEMS Microbiol Lett; 2003 Mar; 220(2):261-9. PubMed ID: 12670690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation in vitro of respiratory nitrate reductase of Escherichia coli K12 grown in the presence of tungstate. Involvement of molybdenum cofactor.
    Saracino L; Violet M; Boxer DH; Giordano G
    Eur J Biochem; 1986 Aug; 158(3):483-90. PubMed ID: 3525161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of molybdate and selenite on formate and nitrate metabolism in Escherichia coli.
    Lester RL; DeMoss JA
    J Bacteriol; 1971 Mar; 105(3):1006-14. PubMed ID: 4926673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molybdoenzymes and molybdenum cofactor in plants.
    Mendel RR; Hänsch R
    J Exp Bot; 2002 Aug; 53(375):1689-98. PubMed ID: 12147719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of molybdenum and tungsten on synthesis and composition of formate dehydrogenase in Methanobacterium formicicum.
    May HD; Patel PS; Ferry JG
    J Bacteriol; 1988 Aug; 170(8):3384-9. PubMed ID: 2457011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase.
    Hawkes TR; Bray RC
    Biochem J; 1984 Apr; 219(2):481-93. PubMed ID: 6234882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of nit-1 nitrate reductase by W-formate dehydrogenase.
    Deaton JC; Solomon EI; Durfor CN; Wetherbee PJ; Burgess BK; Jacobs DB
    Biochem Biophys Res Commun; 1984 Jun; 121(3):1042-7. PubMed ID: 6234890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus.
    Sevcenco AM; Bevers LE; Pinkse MW; Krijger GC; Wolterbeek HT; Verhaert PD; Hagen WR; Hagedoorn PL
    J Bacteriol; 2010 Aug; 192(16):4143-52. PubMed ID: 20562313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of molybdenum cofactor from Escherichia coli.
    Amy NK; Rajagopalan KV
    J Bacteriol; 1979 Oct; 140(1):114-24. PubMed ID: 387715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molybdenum and iron as functional consitituents of the enzymes of the nitrate-reducing system of Azotobacter chroococcum.
    Guerrero MG; Vega JM
    Arch Microbiol; 1975; 102(2):91-4. PubMed ID: 1115563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of molybdate, tungstate, and selenium compounds on formate dehydrogenase and other enzyme systems in Escherichia coli.
    Enoch HG; Lester RL
    J Bacteriol; 1972 Jun; 110(3):1032-40. PubMed ID: 4555402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.