BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 37010001)

  • 1. Need for objective task-based evaluation of deep learning-based denoising methods: A study in the context of myocardial perfusion SPECT.
    Yu Z; Rahman MA; Laforest R; Schindler TH; Gropler RJ; Wahl RL; Siegel BA; Jha AK
    Med Phys; 2023 Jul; 50(7):4122-4137. PubMed ID: 37010001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Need for Objective Task-based Evaluation of Deep Learning-Based Denoising Methods: A Study in the Context of Myocardial Perfusion SPECT.
    Yu Z; Rahman MA; Laforest R; Schindler TH; Gropler RJ; Wahl RL; Siegel BA; Jha AK
    ArXiv; 2023 Apr; ():. PubMed ID: 36945690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of deep learning-based denoising methods in cardiac SPECT.
    Sohlberg A; Kangasmaa T; Constable C; Tikkakoski A
    EJNMMI Phys; 2023 Feb; 10(1):9. PubMed ID: 36752847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the limited performance of a deep-learning-based SPECT denoising approach: An observer-study-based characterization.
    Yu Z; Rahman MA; Jha AK
    Proc SPIE Int Soc Opt Eng; 2022; 12035():. PubMed ID: 35847481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DEMIST: A deep-learning-based task-specific denoising approach for myocardial perfusion SPECT.
    Rahman MA; Yu Z; Laforest R; Abbey CK; Siegel BA; Jha AK
    ArXiv; 2023 Oct; ():. PubMed ID: 37332570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving detection accuracy of perfusion defect in standard dose SPECT-myocardial perfusion imaging by deep-learning denoising.
    Liu J; Yang Y; Wernick MN; Pretorius PH; Slomka PJ; King MA
    J Nucl Cardiol; 2022 Oct; 29(5):2340-2349. PubMed ID: 34282538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A task-specific deep-learning-based denoising approach for myocardial perfusion SPECT.
    Rahman MA; Yu Z; Siegel BA; Jha AK
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12467():. PubMed ID: 37990706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observer studies of image quality of denoising reduced-count cardiac single photon emission computed tomography myocardial perfusion imaging by three-dimensional Gaussian post-reconstruction filtering and deep learning.
    Pretorius PH; Liu J; Kalluri KS; Jiang Y; Leppo JA; Dahlberg ST; Kikut J; Parker MW; Keating FK; Licho R; Auer B; Lindsay C; Konik A; Yang Y; Wernick MN; King MA
    J Nucl Cardiol; 2023 Dec; 30(6):2427-2437. PubMed ID: 37221409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging.
    Liu J; Yang Y; Wernick MN; Pretorius PH; King MA
    Med Phys; 2021 Jan; 48(1):156-168. PubMed ID: 33145782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of post reconstruction- and reconstruction-based deep learning denoising methods in cardiac SPECT.
    Sohlberg A; Kangasmaa T; Tikkakoski A
    Biomed Phys Eng Express; 2023 Sep; 9(6):. PubMed ID: 37666231
    [No Abstract]   [Full Text] [Related]  

  • 11. A task-specific deep-learning-based denoising approach for myocardial perfusion SPECT.
    Rahman MA; Yu Z; Siegel BA; Jha AK
    ArXiv; 2023 Mar; ():. PubMed ID: 36911276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based denoising of low-dose SPECT myocardial perfusion images: quantitative assessment and clinical performance.
    Aghakhan Olia N; Kamali-Asl A; Hariri Tabrizi S; Geramifar P; Sheikhzadeh P; Farzanefar S; Arabi H; Zaidi H
    Eur J Nucl Med Mol Imaging; 2022 Apr; 49(5):1508-1522. PubMed ID: 34778929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dose reduction and image enhancement in micro-CT using deep learning.
    Muller FM; Maebe J; Vanhove C; Vandenberghe S
    Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning generation of preclinical positron emission tomography (PET) images from low-count PET with task-based performance assessment.
    Dutta K; Laforest R; Luo J; Jha AK; Shoghi KI
    Med Phys; 2024 May; ():. PubMed ID: 38710222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks.
    Ghaly M; Du Y; Links JM; Frey EC
    Phys Med Biol; 2016 Mar; 61(5):2048-66. PubMed ID: 26895287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pediatric evaluations for deep learning CT denoising.
    Nelson BJ; Kc P; Badal A; Jiang L; Masters SC; Zeng R
    Med Phys; 2024 Feb; 51(2):978-990. PubMed ID: 38127330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing the risk of hallucinations with interpretable deep learning models for low-dose CT denoising: comparative performance analysis.
    Patwari M; Gutjahr R; Marcus R; Thali Y; Calvarons AF; Raupach R; Maier A
    Phys Med Biol; 2023 Oct; 68(19):. PubMed ID: 37733068
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 19.