These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37010013)

  • 21. Single-Site Molybdenum on Solid Support Materials for Catalytic Hydrogenation of N
    Azofra LM; Morlanés N; Poater A; Samantaray MK; Vidjayacoumar B; Albahily K; Cavallo L; Basset JM
    Angew Chem Int Ed Engl; 2018 Nov; 57(48):15812-15816. PubMed ID: 30311342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation.
    Wang P; Chang F; Gao W; Guo J; Wu G; He T; Chen P
    Nat Chem; 2017 Jan; 9(1):64-70. PubMed ID: 27995914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ formed "weakly ligated/labile ligand" iridium(0) nanoparticles and aggregates as catalysts for the complete hydrogenation of neat benzene at room temperature and mild pressures.
    Bayram E; Zahmakiran M; Ozkar S; Finke RG
    Langmuir; 2010 Jul; 26(14):12455-64. PubMed ID: 20536218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex.
    Pool JA; Lobkovsky E; Chirik PJ
    Nature; 2004 Feb; 427(6974):527-30. PubMed ID: 14765191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A density functional theory study of ethylene hydrogenation on MgO- and γ-Al2O3-supported carbon-containing Ir4 clusters.
    Qi K; Zhao JM; Wang GC
    Phys Chem Chem Phys; 2015 Feb; 17(7):4899-908. PubMed ID: 25332126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of mesoporous iridium nanosponge: a highly active, thermally stable and efficient olefin hydrogenation catalyst.
    Ghosh S; Jagirdar BR
    Dalton Trans; 2017 Aug; 46(34):11431-11439. PubMed ID: 28815234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of dendritic iridium nanostructures based on the oriented attachment mechanism and their enhanced CO and ammonia catalytic activities.
    Wang C; Xiao G; Sui Y; Yang X; Liu G; Jia M; Han W; Liu B; Zou B
    Nanoscale; 2014 Dec; 6(24):15059-65. PubMed ID: 25366566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen activation and metal hydride formation trigger cluster formation from supported iridium complexes.
    Lu J; Aydin C; Browning ND; Gates BC
    J Am Chem Soc; 2012 Mar; 134(11):5022-5. PubMed ID: 22397595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparing B3LYP and B97 Dispersion-corrected Functionals for Studying Adsorption and Vibrational Spectra in Nitrogen Reduction.
    Grossman EF; Daramola DA; Botte GG
    ChemistryOpen; 2021 Mar; 10(3):316-326. PubMed ID: 33434349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chiral-at-Metal: Iridium(III) Tetrazole Complexes With Proton-Responsive P-OH Groups for CO
    Ocansey E; Darkwa J; Makhubela BCE
    Front Chem; 2020; 8():591353. PubMed ID: 33304883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mononuclear iridium dinitrogen complexes bonded to zeolite HY.
    Yang D; Chen M; Martinez-Macias C; Dixon DA; Gates BC
    Chemistry; 2015 Jan; 21(2):631-40. PubMed ID: 25381885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Cornucopia of Iridium Nitrogen Compounds Produced from Laser-Ablated Iridium Atoms and Dinitrogen.
    Stüker T; Beckers H; Riedel S
    Chemistry; 2020 Jun; 26(33):7384-7394. PubMed ID: 31951304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalyst-free synthesis of lithium hydride at room temperature.
    Zou R; Li J; Cui J; Zhang W; Lei G; Cao H; Chen P
    Chem Commun (Camb); 2023 Feb; 59(18):2660-2663. PubMed ID: 36785900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of ruthenium hydride species on primary amine synthesis by direct amination of alcohols over a heterogeneous Ru catalyst.
    Kita Y; Kuwabara M; Yamadera S; Kamata K; Hara M
    Chem Sci; 2020 Sep; 11(36):9884-9890. PubMed ID: 34094248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Promotional catalytic activity and reaction mechanism of Ag-modified Ce
    Tang X; Zhang Y; Lei Y; Liu Y; Yi H; Gao F
    J Environ Sci (China); 2023 Feb; 124():491-504. PubMed ID: 36182157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxide- and zeolite-supported isostructural Ir(C2H4)2 complexes: molecular-level observations of electronic effects of supports as ligands.
    Lu J; Aydin C; Browning ND; Gates BC
    Langmuir; 2012 Sep; 28(35):12806-15. PubMed ID: 22861660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage.
    Michalsky R; Avram AM; Peterson BA; Pfromm PH; Peterson AA
    Chem Sci; 2015 Jul; 6(7):3965-3974. PubMed ID: 29218166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visible light driven efficient metal free single atom catalyst supported on nanoporous carbon nitride for nitrogen fixation.
    Bhattacharyya K; Datta A
    Phys Chem Chem Phys; 2019 Jun; 21(23):12346-12352. PubMed ID: 31140497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al
    Wang Y; Craven M; Yu X; Ding J; Bryant P; Huang J; Tu X
    ACS Catal; 2019 Dec; 9(12):10780-10793. PubMed ID: 32064144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.
    Chelucci G; Baldino S; Baratta W
    Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.