These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37010014)

  • 1. Designing N-Confused Metalloporphyrin-Based Covalent Organic Frameworks for Enhanced Electrocatalytic Carbon Dioxide Reduction.
    Ren Z; Zhao B; Xie J
    Small; 2023 Aug; 19(33):e2301818. PubMed ID: 37010014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Regulation of Coupled Phthalocyanine-Porphyrin Covalent Organic Frameworks to Highly Active and Selective Electrocatalytic CO
    Yuan J; Chen S; Zhang Y; Li R; Zhang J; Peng T
    Adv Mater; 2022 Jul; 34(30):e2203139. PubMed ID: 35654012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron/cobalt/nickel regulation for efficient photocatalytic carbon dioxide reduction over phthalocyanine covalent organic frameworks.
    Zhang Q; Chen M; Zhang Y; Ye Y; Liu D; Xu C; Ma Z; Lou B; Yuan R; Sa R
    Nanoscale; 2023 Oct; 15(39):16030-16038. PubMed ID: 37782458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermo-, Electro-, and Photocatalytic CO
    Wu QJ; Liang J; Huang YB; Cao R
    Acc Chem Res; 2022 Oct; 55(20):2978-2997. PubMed ID: 36153952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ordered Integration and Heterogenization of Catalysts and Photosensitizers in Metal-/Covalent-Organic Frameworks for Boosting CO
    Yin HQ; Zhang ZM; Lu TB
    Acc Chem Res; 2023 Oct; 56(19):2676-2687. PubMed ID: 37707286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Donor-Acceptor Heterojunctions in Covalent Organic Framework for Enhanced CO
    Wu Q; Mao MJ; Wu QJ; Liang J; Huang YB; Cao R
    Small; 2021 Jun; 17(22):e2004933. PubMed ID: 33155428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CoN
    Zhai L; Yang S; Lu C; Cui CX; Xu Q; Liu J; Yang X; Meng X; Lu S; Zhuang X; Zeng G; Jiang Z
    Small; 2022 Aug; 18(32):e2200736. PubMed ID: 35810455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocatalytic CO₂ Reduction: From Homogeneous Catalysts to Heterogeneous-Based Reticular Chemistry.
    Al-Omari AA; Yamani ZH; Nguyen HL
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30388731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ag Nanoparticles-Confined Doped within Triazine-Based Covalent Organic Frameworks for Syngas Production from Electrocatalytic Reduction of CO
    Cai S; Tao S; Chong M; Shi Z; Liu X; Cheng D; Chen F
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39356972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Construction of Boronic-Ester Linkages in Covalent Organic Frameworks for the Carbon Dioxide Reduction.
    Yang X; Li X; Liu M; Yang S; Xu Q; Zeng G
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202317785. PubMed ID: 38085127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elaborate Modulating Binding Strength of Intermediates via Three-component Covalent Organic Frameworks for CO
    Liu M; Cui CX; Yang S; Yang X; Li X; He J; Xu Q; Zeng G
    Angew Chem Int Ed Engl; 2024 May; 63(20):e202401750. PubMed ID: 38407379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-Supported Single Metal Site Catalysts for Electrochemical CO
    Zhu Y; Yang X; Peng C; Priest C; Mei Y; Wu G
    Small; 2021 Apr; 17(16):e2005148. PubMed ID: 33448131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational screening of MN
    Mao X; Tang C; He T; Wijethunge D; Yan C; Zhu Z; Du A
    Nanoscale; 2020 Mar; 12(10):6188-6194. PubMed ID: 32133471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating the Density of Catalytic Sites in Multiple-Component Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction.
    Liu M; Zhao X; Yang S; Yang X; Li X; He J; Chen GZ; Xu Q; Zeng G
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44384-44393. PubMed ID: 37672678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Stable Layered Coordination Polymer Electrocatalyst toward Efficient CO
    Chen X; Jia S; Chen C; Jiao J; Zhai J; Deng T; Xue C; Cheng H; Dong M; Xia W; Zeng J; Xing X; Wu H; He M; Han B
    Adv Mater; 2024 Mar; 36(11):e2310273. PubMed ID: 37974514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecularly Woven Cationic Covalent Organic Frameworks for Highly Selective Electrocatalytic Conversion of CO
    Dagnaw FW; Harrath K; Zheng T; Wu XD; Liu YZ; Li RQ; Xie LH; Li Z; He X; Tong QX; Jian JX
    Adv Sci (Weinh); 2024 Nov; 11(42):e2408152. PubMed ID: 39254191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porosity as a Design Element for Developing Catalytic Molecular Materials for Electrochemical and Photochemical Carbon Dioxide Reduction.
    De La Torre P; An L; Chang CJ
    Adv Mater; 2023 Oct; 35(40):e2302122. PubMed ID: 37144618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Honeycomb-Like Porous Crystalline Hetero-Electrocatalyst for Efficient Electrocatalytic CO
    Yang YL; Wang YR; Dong LZ; Li Q; Zhang L; Zhou J; Sun SN; Ding HM; Chen Y; Li SL; Lan YQ
    Adv Mater; 2022 Nov; 34(44):e2206706. PubMed ID: 36088527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic Phthalocyanine-Based Covalent Organic Frameworks with Tunable Pendant Groups for Electrocatalytic CO
    Xie T; Chen S; Yue Y; Sheng T; Huang N; Xiong Y
    Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202411188. PubMed ID: 38975980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting Electrocatalytic Reduction of CO
    Zhang Y; Yang R; Li H; Zeng Z
    Small; 2022 Nov; 18(44):e2203759. PubMed ID: 36123132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.