These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37010019)

  • 1. Solar Energy Storage Using a Cu
    Ciria-Ramos I; Juarez-Perez EJ; Haro M
    Small; 2023 Jul; 19(28):e2301244. PubMed ID: 37010019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photorechargeable High Voltage Redox Battery Enabled by Ta
    Cheng Q; Fan W; He Y; Ma P; Vanka S; Fan S; Mi Z; Wang D
    Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28464392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Motivated SnO
    Hu C; Chen L; Hu Y; Chen A; Chen L; Jiang H; Li C
    Adv Mater; 2021 Dec; 33(49):e2103558. PubMed ID: 34626027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light Rechargeable Lithium-Ion Batteries Using V
    Boruah BD; Wen B; De Volder M
    Nano Lett; 2021 Apr; 21(8):3527-3532. PubMed ID: 33856814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molybdenum Disulfide-Zinc Oxide Photocathodes for Photo-Rechargeable Zinc-Ion Batteries.
    Boruah BD; Wen B; De Volder M
    ACS Nano; 2021 Oct; 15(10):16616-16624. PubMed ID: 34609134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Solar Rechargeable Seawater Batteries Based on Semiconductor Photoelectrodes.
    Mozaffari S; Nateghi MR
    Top Curr Chem (Cham); 2022 Jun; 380(5):28. PubMed ID: 35662375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in the Research of Photo-Assisted Lithium-Based Rechargeable Batteries.
    Yu X; Liu G; Wang T; Gong H; Qu H; Meng X; He J; Ye J
    Chemistry; 2022 Nov; 28(66):e202202104. PubMed ID: 36039771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-Assisted Rechargeable Lithium Batteries: Organic Molecules for Simultaneous Energy Harvesting and Storage.
    Kato K; Puthirath AB; Mojibpour A; Miroshnikov M; Satapathy S; Thangavel NK; Mahankali K; Dong L; Arava LMR; John G; Bharadwaj P; Babu G; Ajayan PM
    Nano Lett; 2021 Jan; 21(2):907-913. PubMed ID: 33416335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photorechargeable Lead-Free Perovskite Lithium-Ion Batteries Using Hexagonal Cs
    Tewari N; Shivarudraiah SB; Halpert JE
    Nano Lett; 2021 Jul; 21(13):5578-5585. PubMed ID: 34133191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary Weaknesses: A Win-Win Approach for rGO/CdS to Improve the Energy Conversion Performance of Integrated Photorechargeable Li-S Batteries.
    Yang T; Mao H; Zhang Q; Xu C; Gao Q; Cai X; Zhang S; Fang Y; Zhou X; Peng F; Yang S
    Angew Chem Int Ed Engl; 2024 May; 63(22):e202403022. PubMed ID: 38485698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.
    Yu M; McCulloch WD; Beauchamp DR; Huang Z; Ren X; Wu Y
    J Am Chem Soc; 2015 Jul; 137(26):8332-5. PubMed ID: 26102317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolithic All-Solid-State High-Voltage Li-Metal Thin-Film Rechargeable Battery.
    Madinabeitia I; Rikarte J; Etxebarria A; Baraldi G; Fernández-Carretero FJ; Garbayo I; Cid R; García-Luis A; Muñoz-Márquez MÁ
    ACS Appl Energy Mater; 2022 Oct; 5(10):12120-12131. PubMed ID: 36311465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced Rechargeable Lithium-Ion Battery.
    Wang J; Wang Y; Zhu C; Liu B
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4071-4078. PubMed ID: 35012312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon superstructure-supported half-metallic V2O3 nanospheres for high-efficiency photorechargeable zinc ion batteries.
    Zhao Y; He T; Li J; Zhu C; Tan Y; Zhu K; Chou S; Chen Y
    Angew Chem Int Ed Engl; 2024 Jun; ():e202408218. PubMed ID: 38923694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the Lithium-Ion Concentration in Electrolytes on the Performance of Dye-Sensitized Photorechargeable Batteries.
    Han HG; Yoon SY; Kim BM; Lee MH; Kim S; Shin H; Roh DH; Song HK; Kwon TH
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40378-40384. PubMed ID: 37594234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photorechargeable Hybrid Halide Perovskite Supercapacitors.
    Kumar R; Kumar A; Shukla PS; Varma GD; Venkataraman D; Bag M
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35592-35599. PubMed ID: 35903891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unbiased, complete solar charging of a neutral flow battery by a single Si photocathode.
    Wedege K; Bae D; Dražević E; Mendes A; Vesborg PCK; Bentien A
    RSC Adv; 2018 Feb; 8(12):6331-6340. PubMed ID: 35540426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.
    Li N; Wang Y; Tang D; Zhou H
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9271-4. PubMed ID: 26096640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Cu2ZnSnS4 Films with Modified Surface for Thin-Film Lithium-Ion Batteries.
    Lin J; Guo J; Liu C; Guo H
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17311-7. PubMed ID: 26192026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.