These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 37010106)
21. Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch). Saremba BM; Tymm FJM; Baethke K; Rheault MR; Sherif SM; Saxena PK; Murch SJ Plant Signal Behav; 2017 May; 12(5):e1296997. PubMed ID: 28448744 [TBL] [Abstract][Full Text] [Related]
22. Can insect egg deposition 'warn' a plant of future feeding damage by herbivorous larvae? Beyaert I; Köpke D; Stiller J; Hammerbacher A; Yoneya K; Schmidt A; Gershenzon J; Hilker M Proc Biol Sci; 2012 Jan; 279(1726):101-8. PubMed ID: 21561977 [TBL] [Abstract][Full Text] [Related]
23. Resistance of temperate Chinese elms (Ulmus spp.) to feeding by the adult elm leaf beetle (Coleoptera: Chrysomelidae). Miller F; Ware G J Econ Entomol; 2001 Feb; 94(1):162-6. PubMed ID: 11233108 [TBL] [Abstract][Full Text] [Related]
24. Cascading effects of early-season herbivory on late-season herbivores and their parasitoids. Hernandez-Cumplido J; Glauser G; Benrey B Ecology; 2016 May; 97(5):1283-97. PubMed ID: 27349104 [TBL] [Abstract][Full Text] [Related]
25. Leaf chemical defences and insect herbivory in oak: accounting for canopy position unravels marked genetic relatedness effects. Valdés-Correcher E; Bourdin A; González-Martínez SC; Moreira X; Galmán A; Castagneyrol B; Hampe A Ann Bot; 2020 Oct; 126(5):865-872. PubMed ID: 32463869 [TBL] [Abstract][Full Text] [Related]
26. Leaf-chewing herbivores affect preference and performance of a specialist root herbivore. Karssemeijer PN; Winzen L; van Loon JJA; Dicke M Oecologia; 2022 Jun; 199(2):243-255. PubMed ID: 35192063 [TBL] [Abstract][Full Text] [Related]
27. Unprecedented oviposition tactics avoid plant defences and reduce attack by parasitic wasps. Shi JH; Sun Z; Pickett JA; Hu XJ; Wang C; Liu L; Jin H; Abdelnabby H; Foba CN; Yang XQ; Chang XQ; Wang MQ Plant Cell Environ; 2024 Jan; 47(1):308-318. PubMed ID: 37807627 [TBL] [Abstract][Full Text] [Related]
28. The Impact of Wielkopolan B; Frąckowiak P; Wieczorek P; Obrępalska-Stęplowska A Cells; 2022 Jul; 11(15):. PubMed ID: 35954184 [TBL] [Abstract][Full Text] [Related]
29. Infestation of grain fields and degree-day phenology of the cereal leaf beetle (Coleoptera: Chrysomelidae) in Utah: long-term patterns. Evans EW; Carlile NR; Innes MB; Pitigala N J Econ Entomol; 2014 Feb; 107(1):240-9. PubMed ID: 24665707 [TBL] [Abstract][Full Text] [Related]
30. Susceptibility of 32 elm species and hybrids (Ulmus spp.) to the elm leaf beetle (Coleoptera: Chrysomelidae) under field conditions in Arizona. Bosu PP; Miller F; Wagner MR J Econ Entomol; 2007 Dec; 100(6):1808-14. PubMed ID: 18232397 [TBL] [Abstract][Full Text] [Related]
31. Insect egg deposition renders plant defence against hatching larvae more effective in a salicylic acid-dependent manner. Lortzing V; Oberländer J; Lortzing T; Tohge T; Steppuhn A; Kunze R; Hilker M Plant Cell Environ; 2019 Mar; 42(3):1019-1032. PubMed ID: 30252928 [TBL] [Abstract][Full Text] [Related]
32. Lianas as a food resource for herbivorous insects: a comparison with trees. Odell EH; Stork NE; Kitching RL Biol Rev Camb Philos Soc; 2019 Aug; 94(4):1416-1429. PubMed ID: 30887664 [TBL] [Abstract][Full Text] [Related]
33. Consequences of combined herbivore feeding and pathogen infection for fitness of Barbarea vulgaris plants. van Mölken T; Kuzina V; Munk KR; Olsen CE; Sundelin T; van Dam NM; Hauser TP Oecologia; 2014 Jun; 175(2):589-600. PubMed ID: 24687328 [TBL] [Abstract][Full Text] [Related]
34. Methyl jasmonate does not induce changes in Eucalyptus grandis leaves that alter the effect of constitutive defences on larvae of a specialist herbivore. Henery ML; Wallis IR; Stone C; Foley WJ Oecologia; 2008 Jul; 156(4):847-59. PubMed ID: 18481100 [TBL] [Abstract][Full Text] [Related]
35. Phytochemical variation in treetops: causes and consequences for tree-insect herbivore interactions. Lämke JS; Unsicker SB Oecologia; 2018 Jun; 187(2):377-388. PubMed ID: 29473116 [TBL] [Abstract][Full Text] [Related]
36. A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance. Erb M; Robert CA; Marti G; Lu J; Doyen GR; Villard N; Barrière Y; French BW; Wolfender JL; Turlings TC; Gershenzon J Plant Physiol; 2015 Dec; 169(4):2884-94. PubMed ID: 26430225 [TBL] [Abstract][Full Text] [Related]
37. Differential Impact of Herbivores from Three Feeding Guilds on Systemic Secondary Metabolite Induction, Phytohormone Levels and Plant-Mediated Herbivore Interactions. Eisenring M; Glauser G; Meissle M; Romeis J J Chem Ecol; 2018 Dec; 44(12):1178-1189. PubMed ID: 30267359 [TBL] [Abstract][Full Text] [Related]
38. Strategies of chemical anti-predator defences in leaf beetles: is sequestration of plant toxins less costly than de novo synthesis? Zvereva EL; Zverev V; Kruglova OY; Kozlov MV Oecologia; 2017 Jan; 183(1):93-106. PubMed ID: 27718063 [TBL] [Abstract][Full Text] [Related]
39. Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore. Castano-Duque L; Helms A; Ali JG; Luthe DS J Chem Ecol; 2018 Aug; 44(7-8):727-745. PubMed ID: 29926336 [TBL] [Abstract][Full Text] [Related]
40. Oak genotype and phenolic compounds differently affect the performance of two insect herbivores with contrasting diet breadth. Damestoy T; Brachi B; Moreira X; Jactel H; Plomion C; Castagneyrol B Tree Physiol; 2019 Apr; 39(4):615-627. PubMed ID: 30668790 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]