These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37010351)

  • 41. Numerical Approach to Study the Behavior of an Artificial Ventricle: Fluid-Structure Interaction Followed By Fluid Dynamics With Moving Boundaries.
    Luraghi G; Wu W; De Castilla H; Rodriguez Matas JF; Dubini G; Dubuis P; Grimmé M; Migliavacca F
    Artif Organs; 2018 Oct; 42(10):E315-E324. PubMed ID: 30298937
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel formulation for the study of the ascending aortic fluid dynamics with in vivo data.
    Capellini K; Gasparotti E; Cella U; Costa E; Fanni BM; Groth C; Porziani S; Biancolini ME; Celi S
    Med Eng Phys; 2021 May; 91():68-78. PubMed ID: 33008714
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluid Structure Interaction on Paravalvular Leakage of Transcatheter Aortic Valve Implantation Related to Aortic Stenosis: A Patient-Specific Case.
    Basri AA; Zuber M; Basri EI; Zakaria MS; Aziz AFA; Tamagawa M; Ahmad KA
    Comput Math Methods Med; 2020; 2020():9163085. PubMed ID: 32454886
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phonon hydrodynamics in crystalline materials.
    Ghosh K; Kusiak A; Battaglia JL
    J Phys Condens Matter; 2022 Jun; 34(32):. PubMed ID: 35588717
    [TBL] [Abstract][Full Text] [Related]  

  • 45. pH-Sensitive Hydrogel for Micro-Fluidic Valve.
    Zhang Y; Liu Z; Swaddiwudhipong S; Miao H; Ding Z; Yang Z
    J Funct Biomater; 2012 Jul; 3(3):464-79. PubMed ID: 24955627
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonlinear ship waves and computational fluid dynamics.
    Miyata H; Orihara H; Sato Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2014; 90(8):278-300. PubMed ID: 25311139
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems.
    Tian FB; Dai H; Luo H; Doyle JF; Rousseau B
    J Comput Phys; 2014 Feb; 258():. PubMed ID: 24415796
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models.
    Alimohammadi M; Sherwood JM; Karimpour M; Agu O; Balabani S; Díaz-Zuccarini V
    Biomed Eng Online; 2015 Apr; 14():34. PubMed ID: 25881252
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluid-structure interaction (FSI) analysis of stent-graft for aortic endovascular aneurysm repair (EVAR): Material and structural considerations.
    Jayendiran R; Nour B; Ruimi A
    J Mech Behav Biomed Mater; 2018 Nov; 87():95-110. PubMed ID: 30055375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Study of Non-Newtonian biomagnetic blood flow in a stenosed bifurcated artery having elastic walls.
    Shahzad H; Wang X; Sarris I; Iqbal K; Hafeez MB; Krawczuk M
    Sci Rep; 2021 Dec; 11(1):23835. PubMed ID: 34903853
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational fluid dynamics modelling of human upper airway: A review.
    Faizal WM; Ghazali NNN; Khor CY; Badruddin IA; Zainon MZ; Yazid AA; Ibrahim NB; Razi RM
    Comput Methods Programs Biomed; 2020 Nov; 196():105627. PubMed ID: 32629222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Review on CFD simulation in heart with dilated cardiomyopathy and myocardial infarction.
    Chan BT; Lim E; Chee KH; Abu Osman NA
    Comput Biol Med; 2013 May; 43(4):377-85. PubMed ID: 23428371
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simplified Aeroelastic Model for Fluid Structure Interaction between Microcantilever Sensors and Fluid Surroundings.
    Wang F; Zhao L; Zhang Y; Qiao Z
    PLoS One; 2015; 10(4):e0123860. PubMed ID: 25898213
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of elastic upstream artery length on fluid-structure interaction modeling: a comparative study using patient-specific cerebral aneurysm.
    Lee CJ; Zhang Y; Takao H; Murayama Y; Qian Y
    Med Eng Phys; 2013 Sep; 35(9):1377-84. PubMed ID: 23664305
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation the effect of geometry and position of polymeric heart valves on hemodynamic with fluid-structure interaction numerical method.
    Farokhi EA; Niroomand-Oscuii H; Yazdanpanah K
    Med Eng Phys; 2021 Nov; 97():10-17. PubMed ID: 34756333
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heart blood flow simulation: a perspective review.
    Doost SN; Ghista D; Su B; Zhong L; Morsi YS
    Biomed Eng Online; 2016 Aug; 15(1):101. PubMed ID: 27562639
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Implicit Partitioned Cardiovascular Fluid-Structure Interaction of the Heart Cycle Using Non-newtonian Fluid Properties and Orthotropic Material Behavior.
    Muehlhausen MP; Janoske U; Oertel H
    Cardiovasc Eng Technol; 2015 Mar; 6(1):8-18. PubMed ID: 26577098
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines.
    Kamensky D; Hsu MC; Yu Y; Evans JA; Sacks MS; Hughes TJ
    Comput Methods Appl Mech Eng; 2017 Feb; 314():408-472. PubMed ID: 28239201
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Visualizing multiphysics, fluid-structure interaction phenomena in intracranial aneurysms.
    Perdikaris P; Insley JA; Grinberg L; Yu Y; Papka ME; Karniadakis GE
    Parallel Comput; 2016 Jul; 55():9-16. PubMed ID: 29081561
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On methodology and application of smoothed particle hydrodynamics in fluid, solid and biomechanics.
    Xu F; Wang J; Yang Y; Wang L; Dai Z; Han R
    Acta Mech Sin; 2023; 39(2):722185. PubMed ID: 36776492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.