These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37010435)

  • 1. A Mechanistic Overview of the Current Status and Future Challenges in Air Cathode for Aluminum Air Batteries.
    Islam S; Nayem SMA; Anjum A; Shaheen Shah S; Ahammad AJS; Aziz MA
    Chem Rec; 2024 Jan; 24(1):e202300017. PubMed ID: 37010435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mechanistic Overview of the Current Status and Future Challenges of Aluminum Anode and Electrolyte in Aluminum-Air Batteries.
    Nayem SMA; Islam S; Mohamed M; Shaheen Shah S; Ahammad AJS; Aziz MA
    Chem Rec; 2024 Jan; 24(1):e202300005. PubMed ID: 36807755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.
    Cheng F; Chen J
    Chem Soc Rev; 2012 Mar; 41(6):2172-92. PubMed ID: 22254234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries.
    Kundu A; Mallick S; Ghora S; Raj CR
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40172-40199. PubMed ID: 34424683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries.
    Liu JN; Li BQ; Zhao CX; Yu J; Zhang Q
    ChemSusChem; 2020 Mar; 13(6):1529-1536. PubMed ID: 31845530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and Strategies of Aluminum Anodes for High-Performance Aluminum-Air Batteries.
    Zhang Y; Lv C; Zhu Y; Kuang J; Wang H; Li Y; Tang Y
    Small Methods; 2024 May; 8(5):e2300911. PubMed ID: 38150657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes.
    Wang ZL; Xu D; Xu JJ; Zhang XB
    Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma-Assisted Synthesis of Defect-Rich O and N Codoped Carbon Nanofibers Loaded with Manganese Oxides as an Efficient Oxygen Reduction Electrocatalyst for Aluminum-Air Batteries.
    Cheng R; Wang F; Jiang M; Li K; Zhao T; Meng P; Yang J; Fu C
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37123-37132. PubMed ID: 34333971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
    Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW
    Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.
    Wang KX; Zhu QC; Chen JS
    Small; 2018 Jul; 14(27):e1800078. PubMed ID: 29750439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layered Oxide Cathodes for Sodium-Ion Batteries: Storage Mechanism, Electrochemistry, and Techno-economics.
    Zuo W; Innocenti A; Zarrabeitia M; Bresser D; Yang Y; Passerini S
    Acc Chem Res; 2023 Feb; 56(3):284-296. PubMed ID: 36696961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Organic Framework-Derived Reduced Graphene Oxide-Supported ZnO/ZnCo
    Liu Y; Jiang H; Hao J; Liu Y; Shen H; Li W; Li J
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31841-31852. PubMed ID: 28845966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Zinc-Air Batteries with Free-Standing Hierarchical Nanostructures of the Air Cathode for Portable Applications.
    Zheng X; Mohammadi N; Moreno Zuria A; Mohamedi M
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61374-61385. PubMed ID: 34927435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binder-Free V
    Diem AM; Fenk B; Bill J; Burghard Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Configurational Advances for Solid-State Lithium Batteries Featuring Conversion-Type Cathodes.
    Chiu KC; Chang JK; Su YS
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MnO
    Shui Z; Liao X; Lei Y; Ni J; Liu Y; Dan Y; Zhao W; Chen X
    Langmuir; 2020 Nov; 36(43):12954-12962. PubMed ID: 33100011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Effects of Electrodes and Electrolytes in Metal-Sulfur Batteries: Progress and Prospective.
    Zeng L; Zhu J; Chu PK; Huang L; Wang J; Zhou G; Yu XF
    Adv Mater; 2022 Dec; 34(49):e2204636. PubMed ID: 35903947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives.
    Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH
    J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Volumetric Energy Density Sulfur Cathode with Heavy and Catalytic Metal Oxide Host for Lithium-Sulfur Battery.
    Liu YT; Liu S; Li GR; Yan TY; Gao XP
    Adv Sci (Weinh); 2020 Jun; 7(12):1903693. PubMed ID: 32596113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.