These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37010469)

  • 1. ClC-7 drives intraphagosomal chloride accumulation to support hydrolase activity and phagosome resolution.
    Wu JZ; Zeziulia M; Kwon W; Jentsch TJ; Grinstein S; Freeman SA
    J Cell Biol; 2023 Jun; 222(6):. PubMed ID: 37010469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tonic inhibition of the chloride/proton antiporter ClC-7 by PI(3,5)P2 is crucial for lysosomal pH maintenance.
    Leray X; Hilton JK; Nwangwu K; Becerril A; Mikusevic V; Fitzgerald G; Amin A; Weston MR; Mindell JA
    Elife; 2022 Jun; 11():. PubMed ID: 35670560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct endosomal acidification by the outwardly rectifying CLC-5 Cl(-)/H(+) exchanger.
    Smith AJ; Lippiat JD
    J Physiol; 2010 Jun; 588(Pt 12):2033-45. PubMed ID: 20421284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes.
    Graves AR; Curran PK; Smith CL; Mindell JA
    Nature; 2008 Jun; 453(7196):788-92. PubMed ID: 18449189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride transport in functionally active phagosomes isolated from Human neutrophils.
    Aiken ML; Painter RG; Zhou Y; Wang G
    Free Radic Biol Med; 2012 Dec; 53(12):2308-17. PubMed ID: 23089227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuolar ATPase in phagosome-lysosome fusion.
    Kissing S; Hermsen C; Repnik U; Nesset CK; von Bargen K; Griffiths G; Ichihara A; Lee BS; Schwake M; De Brabander J; Haas A; Saftig P
    J Biol Chem; 2015 May; 290(22):14166-80. PubMed ID: 25903133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prodigiosins uncouple lysosomal vacuolar-type ATPase through promotion of H+/Cl- symport.
    Ohkuma S; Sato T; Okamoto M; Matsuya H; Arai K; Kataoka T; Nagai K; Wasserman HH
    Biochem J; 1998 Sep; 334 ( Pt 3)(Pt 3):731-41. PubMed ID: 9729483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ClC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells.
    Li X; Wang T; Zhao Z; Weinman SA
    Am J Physiol Cell Physiol; 2002 Jun; 282(6):C1483-91. PubMed ID: 11997263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pure chloride channel mutant of CLC-5 causes Dent's disease via insufficient V-ATPase activation.
    Satoh N; Yamada H; Yamazaki O; Suzuki M; Nakamura M; Suzuki A; Ashida A; Yamamoto D; Kaku Y; Sekine T; Seki G; Horita S
    Pflugers Arch; 2016 Jul; 468(7):1183-1196. PubMed ID: 27044412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Recurrent Gain-of-Function Mutation in CLCN6, Encoding the ClC-6 Cl
    Polovitskaya MM; Barbini C; Martinelli D; Harms FL; Cole FS; Calligari P; Bocchinfuso G; Stella L; Ciolfi A; Niceta M; Rizza T; Shinawi M; Sisco K; Johannsen J; Denecke J; Carrozzo R; Wegner DJ; Kutsche K; Tartaglia M; Jentsch TJ
    Am J Hum Genet; 2020 Dec; 107(6):1062-1077. PubMed ID: 33217309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct ClC-6 and ClC-7 Cl
    Coppola MA; Gavazzo P; Zanardi I; Tettey-Matey A; Liantonio A; Fong P; Pusch M
    J Physiol; 2023 Dec; 601(24):5635-5653. PubMed ID: 37937509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H
    Carpaneto A; Boccaccio A; Lagostena L; Di Zanni E; Scholz-Starke J
    EMBO Rep; 2017 Jul; 18(7):1100-1107. PubMed ID: 28536248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysosomal acidification mechanisms.
    Mindell JA
    Annu Rev Physiol; 2012; 74():69-86. PubMed ID: 22335796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation.
    Hara-Chikuma M; Yang B; Sonawane ND; Sasaki S; Uchida S; Verkman AS
    J Biol Chem; 2005 Jan; 280(2):1241-7. PubMed ID: 15504734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacuolar ATPase in phago(lyso)some biology.
    Kissing S; Saftig P; Haas A
    Int J Med Microbiol; 2018 Jan; 308(1):58-67. PubMed ID: 28867521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7.
    Henriksen K; Gram J; Neutzsky-Wulff AV; Jensen VK; Dziegiel MH; Bollerslev J; Karsdal MA
    Biochem Biophys Res Commun; 2009 Jan; 378(4):804-9. PubMed ID: 19070589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation.
    Weinert S; Jabs S; Supanchart C; Schweizer M; Gimber N; Richter M; Rademann J; Stauber T; Kornak U; Jentsch TJ
    Science; 2010 Jun; 328(5984):1401-3. PubMed ID: 20430974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of CFTR and ClC-5 in modulating vacuolar H+-ATPase activity in kidney proximal tubule.
    Carraro-Lacroix LR; Lessa LM; Bezerra CN; Pessoa TD; Souza-Menezes J; Morales MM; Girardi AC; Malnic G
    Cell Physiol Biochem; 2010; 26(4-5):563-76. PubMed ID: 21063094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters.
    Jentsch TJ
    J Physiol; 2007 Feb; 578(Pt 3):633-40. PubMed ID: 17110406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.