These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37010631)

  • 1. GWAS across multiple environments and WGCNA suggest the involvement of ZmARF23 in embryonic callus induction from immature maize embryos.
    Liang T; Hu Y; Xi N; Zhang M; Zou C; Ge F; Yuan G; Gao S; Zhang S; Pan G; Ma L; Lübberstedt T; Shen Y
    Theor Appl Genet; 2023 Apr; 136(4):93. PubMed ID: 37010631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined QTL Mapping across Multiple Environments and Co-Expression Network Analysis Identified Key Genes for Embryogenic Callus Induction from Immature Maize Embryos.
    Long Y; Liang T; Ma L; Liu P; Yang Y; Zhang X; Zou C; Zhang M; Ge F; Yuan G; Lübberstedt T; Pan G; Shen Y
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic variations in ZmSAUR15 contribute to the formation of immature embryo-derived embryonic calluses in maize.
    Wang Y; He S; Long Y; Zhang X; Zhang X; Hu H; Li Z; Hou F; Ge F; Gao S; Pan G; Ma L; Shen Y
    Plant J; 2022 Feb; 109(4):980-991. PubMed ID: 34822726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments.
    Zhang X; Guan Z; Li Z; Liu P; Ma L; Zhang Y; Pan L; He S; Zhang Y; Li P; Ge F; Zou C; He Y; Gao S; Pan G; Shen Y
    Theor Appl Genet; 2020 Oct; 133(10):2881-2895. PubMed ID: 32594266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Association and Gene Co-expression Network Analyses Reveal Complex Genetics of Resistance to Goss's Wilt of Maize.
    Singh A; Li G; Brohammer AB; Jarquin D; Hirsch CN; Alfano JR; Lorenz AJ
    G3 (Bethesda); 2019 Oct; 9(10):3139-3152. PubMed ID: 31362973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zea mays L.) at multiple seedling stages.
    Moussa AA; Mandozai A; Jin Y; Qu J; Zhang Q; Zhao H; Anwari G; Khalifa MAS; Lamboro A; Noman M; Bakasso Y; Zhang M; Guan S; Wang P
    BMC Genomics; 2021 Jul; 22(1):558. PubMed ID: 34284723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of genetic loci associated with rough dwarf disease resistance in maize by integrating GWAS and linkage mapping.
    Zhao M; Liu S; Pei Y; Jiang X; Jaqueth JS; Li B; Han J; Jeffers D; Wang J; Song X
    Plant Sci; 2022 Feb; 315():111100. PubMed ID: 35067294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings.
    Ma L; Zhang M; Chen J; Qing C; He S; Zou C; Yuan G; Yang C; Peng H; Pan G; Lübberstedt T; Shen Y
    Theor Appl Genet; 2021 Oct; 134(10):3305-3318. PubMed ID: 34218289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined GWAS and QTL analysis for dissecting the genetic architecture of kernel test weight in maize.
    Zhang X; Guan Z; Wang L; Fu J; Zhang Y; Li Z; Ma L; Liu P; Zhang Y; Liu M; Li P; Zou C; He Y; Lin H; Yuan G; Gao S; Pan G; Shen Y
    Mol Genet Genomics; 2020 Mar; 295(2):409-420. PubMed ID: 31807910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association study of maize plant architecture using F
    Zhao Y; Wang H; Bo C; Dai W; Zhang X; Cai R; Gu L; Ma Q; Jiang H; Zhu J; Cheng B
    Plant Mol Biol; 2019 Jan; 99(1-2):1-15. PubMed ID: 30519826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic control of root plasticity in response to salt stress in maize.
    Li P; Yang X; Wang H; Pan T; Wang Y; Xu Y; Xu C; Yang Z
    Theor Appl Genet; 2021 May; 134(5):1475-1492. PubMed ID: 33661350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A forward genetics approach integrating genome-wide association study and expression quantitative trait locus mapping to dissect leaf development in maize (Zea mays).
    Miculan M; Nelissen H; Ben Hassen M; Marroni F; Inzé D; Pè ME; Dell'Acqua M
    Plant J; 2021 Aug; 107(4):1056-1071. PubMed ID: 34087008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined linkage mapping and association analysis uncovers candidate genes for 25 leaf-related traits across three environments in maize.
    Dai W; Yu H; Liu K; Chengxu Y; Yan J; Zhang C; Xi N; Liu H; Xiangchen C; Zou C; Zhang M; Gao S; Pan G; Ma L; Shen Y
    Theor Appl Genet; 2023 Jan; 136(1):12. PubMed ID: 36662253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating GWAS and Gene Expression Analysis Identifies Candidate Genes for Root Morphology Traits in Maize at the Seedling Stage.
    Wang H; Wei J; Li P; Wang Y; Ge Z; Qian J; Fan Y; Ni J; Xu Y; Yang Z; Xu C
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31581635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Integration of Linkage Mapping and GWAS Reveals the Key Genes for Ear Shank Length in Maize.
    Liang Z; Xi N; Liu H; Liu P; Xiang C; Zhang C; Zou C; Cheng X; Yu H; Zhang M; Chen Z; Pan G; Yuan G; Gao S; Ma L; Shen Y
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and validation of seed dormancy loci and candidate genes and construction of regulatory networks by WGCNA in maize introgression lines.
    Ma X; Feng L; Tao A; Zenda T; He Y; Zhang D; Duan H; Tao Y
    Theor Appl Genet; 2023 Dec; 136(12):259. PubMed ID: 38038768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Basis of Maize Resistance to Multiple Insect Pests: Integrated Genome-Wide Comparative Mapping and Candidate Gene Prioritization.
    Badji A; Kwemoi DB; Machida L; Okii D; Mwila N; Agbahoungba S; Kumi F; Ibanda A; Bararyenya A; Solemanegy M; Odong T; Wasswa P; Otim M; Asea G; Ochwo-Ssemakula M; Talwana H; Kyamanywa S; Rubaihayo P
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32599710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined linkage mapping and association analysis reveals genetic control of maize kernel moisture content.
    Zhang Y; Hu Y; Guan Z; Liu P; He Y; Zou C; Li P; Gao S; Peng H; Yang C; Pan G; Shen Y; Ma L
    Physiol Plant; 2020 Dec; 170(4):508-518. PubMed ID: 32754968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linkage mapping combined with GWAS revealed the genetic structural relationship and candidate genes of maize flowering time-related traits.
    Shi J; Wang Y; Wang C; Wang L; Zeng W; Han G; Qiu C; Wang T; Tao Z; Wang K; Huang S; Yu S; Wang W; Chen H; Chen C; He C; Wang H; Zhu P; Hu Y; Zhang X; Xie C; Lu X; Li P
    BMC Plant Biol; 2022 Jul; 22(1):328. PubMed ID: 35799118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association analysis of salt tolerance QTLs with SNP markers in maize (Zea mays L.).
    Xie Y; Feng Y; Chen Q; Zhao F; Zhou S; Ding Y; Song X; Li P; Wang B
    Genes Genomics; 2019 Oct; 41(10):1135-1145. PubMed ID: 31243730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.