BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37010685)

  • 21. Should India Move toward Vehicle Electrification? Assessing Life-Cycle Greenhouse Gas and Criteria Air Pollutant Emissions of Alternative and Conventional Fuel Vehicles in India.
    Peshin T; Sengupta S; Azevedo IML
    Environ Sci Technol; 2022 Jul; 56(13):9569-9582. PubMed ID: 35696339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen Storage for Fuel Cell Electric Vehicles: Expert Elicitation and a Levelized Cost of Driving Model.
    Whiston MM; Lima Azevedo IM; Litster S; Samaras C; Whitefoot KS; Whitacre JF
    Environ Sci Technol; 2021 Jan; 55(1):553-562. PubMed ID: 33274912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative total cost of ownership analysis of heavy duty on-road and off-road vehicles powered by hydrogen, electricity, and diesel.
    Rout C; Li H; Dupont V; Wadud Z
    Heliyon; 2022 Dec; 8(12):e12417. PubMed ID: 36593823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Life Cycle Assessment and Key Parameter Comparison of Hydrogen Fuel Cell Vehicles Power Systems].
    Chen YS; Lan LB; Hao Z; Fu P
    Huan Jing Ke Xue; 2022 Aug; 43(8):4402-4412. PubMed ID: 35971737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China.
    Yu Y; Xu H; Cheng J; Wan F; Ju L; Liu Q; Liu J
    Sci Total Environ; 2022 Sep; 837():155626. PubMed ID: 35504393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon emission of energy consumption of the electric vehicle development scenario.
    Wang M; Wang Y; Chen L; Yang Y; Li X
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42401-42413. PubMed ID: 33813710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].
    Shi XQ; Li XN; Yang JX
    Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Charging Strategies to Minimize Greenhouse Gas Emissions of Electrified Delivery Vehicles.
    Woody M; Vaishnav P; Craig MT; Lewis GM; Keoleian GA
    Environ Sci Technol; 2021 Jul; 55(14):10108-10120. PubMed ID: 34240846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Are electric vehicles cost competitive? A case study for China based on a lifecycle assessment.
    Yang L; Yu B; Malima G; Yang B; Chen H; Wei YM
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7793-7810. PubMed ID: 34480315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.
    Tong F; Jaramillo P; Azevedo IM
    Environ Sci Technol; 2015 Jun; 49(12):7123-33. PubMed ID: 25938939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of Electric Vehicles on Indirect Carbon Emissions and the Role of Engine Posttreatment Emission Control Strategies.
    Kurien C; Srivastava AK
    Integr Environ Assess Manag; 2020 Mar; 16(2):234-244. PubMed ID: 31403259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrifying passenger road transport in India requires near-term electricity grid decarbonisation.
    Abdul-Manan AFN; Gordillo Zavaleta V; Agarwal AK; Kalghatgi G; Amer AA
    Nat Commun; 2022 Apr; 13(1):2095. PubMed ID: 35440110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dataset of Japanese patents and patents' holding firms in green vehicle powertrains field.
    Jiang J; Baba K; Zhao Y; Feng J; Kumagai S
    Data Brief; 2022 Oct; 44():108524. PubMed ID: 36039080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy-saving and emission-reduction potential of fuel cell heavy-duty trucks in China during the fuel life cycle.
    Yan R; Jiang Z
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):80559-80572. PubMed ID: 37296253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles.
    Shen W; Han W; Wallington TJ; Winkler SL
    Environ Sci Technol; 2019 May; 53(10):6063-6072. PubMed ID: 31021614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.
    Tamayao MA; Michalek JJ; Hendrickson C; Azevedo IM
    Environ Sci Technol; 2015 Jul; 49(14):8844-55. PubMed ID: 26125323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does Size Matter? The Influence of Size, Load Factor, Range Autonomy, and Application Type on the Life Cycle Assessment of Current and Future Medium- and Heavy-Duty Vehicles.
    Sacchi R; Bauer C; Cox BL
    Environ Sci Technol; 2021 Apr; 55(8):5224-5235. PubMed ID: 33735568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Life cycle CO
    Yu R; Cong L; Hui Y; Zhao D; Yu B
    Sci Total Environ; 2022 Jun; 826():154102. PubMed ID: 35218846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cleaning up while Changing Gears: The Role of Battery Design, Fossil Fuel Power Plants, and Vehicle Policy for Reducing Emissions in the Transition to Electric Vehicles.
    Bruchon M; Chen ZL; Michalek J
    Environ Sci Technol; 2024 Feb; 58(8):3787-3799. PubMed ID: 38350416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.