These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37010744)

  • 81. Recollection of How We Came Across the Protein Modification with Amino Acids by Aminoacyl tRNA-Protein Transferase.
    Kaji H; Kaji A
    Methods Mol Biol; 2023; 2620():15-20. PubMed ID: 37010743
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Arginylation and methylation double up to regulate nuclear proteins and nuclear architecture in vivo.
    Saha S; Wong CC; Xu T; Namgoong S; Zebroski H; Yates JR; Kashina A
    Chem Biol; 2011 Nov; 18(11):1369-78. PubMed ID: 22118671
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Amino-terminal arginylation as a degradation signal for selective autophagy.
    Cha-Molstad H; Kwon YT; Kim BY
    BMB Rep; 2015 Sep; 48(9):487-8. PubMed ID: 26303972
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Inhibition of arginyltransferase 1 induces transcriptional activity of myocardin-related transcription factor A (MRTF-A) and promotes directional migration.
    Eisenach PA; Schikora F; Posern G
    J Biol Chem; 2014 Dec; 289(51):35376-87. PubMed ID: 25381249
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets.
    White MD; Klecker M; Hopkinson RJ; Weits DA; Mueller C; Naumann C; O'Neill R; Wickens J; Yang J; Brooks-Bartlett JC; Garman EF; Grossmann TN; Dissmeyer N; Flashman E
    Nat Commun; 2017 Mar; 8():14690. PubMed ID: 28332493
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Conditional Tek promoter-driven deletion of arginyltransferase in the germ line causes defects in gametogenesis and early embryonic lethality in mice.
    Leu NA; Kurosaka S; Kashina A
    PLoS One; 2009 Nov; 4(11):e7734. PubMed ID: 19890395
    [TBL] [Abstract][Full Text] [Related]  

  • 87. What is the signal for the posttranslational arginylation of proteins?
    Ingoglia NA; Ramanathan M; Zhang N; Tzeng B; Mathur G; Opuni K; Donnelly R
    Neurochem Res; 2000 Jan; 25(1):51-8. PubMed ID: 10685604
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Arginyl-tRNA-protein transferase 1 (ATE1) promotes melanoma cell growth and migration.
    Lazar I; Fabre B; Feng Y; Khateb A; Frit P; Kashina A; Zhang T; Avitan-Hersh E; Kim H; Brown K; Topisirovic I; Ronai ZA
    FEBS Lett; 2022 Jun; 596(11):1468-1480. PubMed ID: 35561126
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Calreticulin-dimerization induced by post-translational arginylation is critical for stress granules scaffolding.
    Carpio MA; Decca MB; Lopez Sambrooks C; Durand ES; Montich GG; Hallak ME
    Int J Biochem Cell Biol; 2013 Jul; 45(7):1223-35. PubMed ID: 23567256
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Preparation of ATE1 Enzyme from Native Mammalian Tissues.
    Kashina AS
    Methods Mol Biol; 2015; 1337():33-7. PubMed ID: 26285878
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Assaying ATE1 Activity in Yeast by β-Gal Degradation.
    Kashina AS
    Methods Mol Biol; 2015; 1337():59-65. PubMed ID: 26285881
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Isolation of a peptide that inhibits the posttranslational arginylation of proteins in rat brain.
    Yu M; Grabow M; Ingoglia NA
    J Mol Neurosci; 1993; 4(3):195-203. PubMed ID: 8292492
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Molecular dissection of arginyltransferases guided by similarity to bacterial peptidoglycan synthases.
    Rai R; Mushegian A; Makarova K; Kashina A
    EMBO Rep; 2006 Aug; 7(8):800-5. PubMed ID: 16826240
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators.
    Hu RG; Sheng J; Qi X; Xu Z; Takahashi TT; Varshavsky A
    Nature; 2005 Oct; 437(7061):981-6. PubMed ID: 16222293
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Protein arginylation of cytoskeletal proteins in the muscle: modifications modifying function.
    Rassier DE; Kashina A
    Am J Physiol Cell Physiol; 2019 May; 316(5):C668-C677. PubMed ID: 30789755
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Serine protease inhibitors block N-terminal arginylation of proteins by inhibiting the arginylation of tRNA in rat brains.
    Yu M; Chakraborty G; Grabow M; Ingoglia NA
    Neurochem Res; 1994 Jan; 19(1):105-10. PubMed ID: 8139756
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Protein arginylation in rat brain cytosol: a proteomic analysis.
    Decca MB; Bosc C; Luche S; Brugière S; Job D; Rabilloud T; Garin J; Hallak ME
    Neurochem Res; 2006 Mar; 31(3):401-9. PubMed ID: 16733816
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Posttranslational arginylation of soluble rat brain proteins after whole body hyperthermia.
    Bongiovanni G; Fissolo S; Barra HS; Hallak ME
    J Neurosci Res; 1999 Apr; 56(1):85-92. PubMed ID: 10213479
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Protein arginylation regulates cellular stress response by stabilizing HSP70 and HSP40 transcripts.
    Deka K; Singh A; Chakraborty S; Mukhopadhyay R; Saha S
    Cell Death Discov; 2016; 2():16074. PubMed ID: 27752365
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling.
    Oh JH; Hyun JY; Chen SJ; Varshavsky A
    Proc Natl Acad Sci U S A; 2020 May; 117(20):10778-10788. PubMed ID: 32366662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.