BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37011039)

  • 1. Fluorescence-Based Detection of Fatty Acid β-Oxidation in Cells and Tissues Using Quinone Methide-Releasing Probes.
    Uchinomiya S; Nagaura T; Weber M; Matsuo Y; Zenmyo N; Yoshida Y; Tsuruta A; Koyanagi S; Ohdo S; Matsunaga N; Ojida A
    J Am Chem Soc; 2023 Apr; 145(14):8248-8260. PubMed ID: 37011039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporally quantitative in vivo imaging of mitochondrial fatty acid β-oxidation at cellular-level resolution in mice.
    Matsumoto A; Matsui I; Uchinomiya S; Katsuma Y; Yasuda S; Okushima H; Imai A; Yamamoto T; Ojida A; Inoue K; Isaka Y
    Am J Physiol Endocrinol Metab; 2023 Nov; 325(5):E552-E561. PubMed ID: 37729022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence detection of metabolic activity of the fatty acid beta oxidation pathway in living cells.
    Uchinomiya S; Matsunaga N; Kamoda K; Kawagoe R; Tsuruta A; Ohdo S; Ojida A
    Chem Commun (Camb); 2020 Mar; 56(20):3023-3026. PubMed ID: 32048639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High concentrations of stavudine impair fatty acid oxidation without depleting mitochondrial DNA in cultured rat hepatocytes.
    Igoudjil A; Massart J; Begriche K; Descatoire V; Robin MA; Fromenty B
    Toxicol In Vitro; 2008 Jun; 22(4):887-98. PubMed ID: 18299183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Fatty Acid β-Oxidation Inhibition Promotes Glucose Utilization and Protein Deposition through Energy Homeostasis Remodeling in Fish.
    Li LY; Li JM; Ning LJ; Lu DL; Luo Y; Ma Q; Limbu SM; Li DL; Chen LQ; Lodhi IJ; Degrace P; Zhang ML; Du ZY
    J Nutr; 2020 Sep; 150(9):2322-2335. PubMed ID: 32720689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy.
    Tan Z; Xiao L; Tang M; Bai F; Li J; Li L; Shi F; Li N; Li Y; Du Q; Lu J; Weng X; Yi W; Zhang H; Fan J; Zhou J; Gao Q; Onuchic JN; Bode AM; Luo X; Cao Y
    Theranostics; 2018; 8(9):2329-2347. PubMed ID: 29721083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impairment of Fatty Acid Oxidation in Alveolar Epithelial Cells Mediates Acute Lung Injury.
    Cui H; Xie N; Banerjee S; Ge J; Guo S; Liu G
    Am J Respir Cell Mol Biol; 2019 Feb; 60(2):167-178. PubMed ID: 30183330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-catenin-activated hepatocellular carcinomas are addicted to fatty acids.
    Senni N; Savall M; Cabrerizo Granados D; Alves-Guerra MC; Sartor C; Lagoutte I; Gougelet A; Terris B; Gilgenkrantz H; Perret C; Colnot S; Bossard P
    Gut; 2019 Feb; 68(2):322-334. PubMed ID: 29650531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CDKN2A/p16INK4a suppresses hepatic fatty acid oxidation through the AMPKα2-SIRT1-PPARα signaling pathway.
    Deleye Y; Cotte AK; Hannou SA; Hennuyer N; Bernard L; Derudas B; Caron S; Legry V; Vallez E; Dorchies E; Martin N; Lancel S; Annicotte JS; Bantubungi K; Pourtier A; Raverdy V; Pattou F; Lefebvre P; Abbadie C; Staels B; Haas JT; Paumelle R
    J Biol Chem; 2020 Dec; 295(50):17310-17322. PubMed ID: 33037071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation.
    Li Y; Xiong Z; Yan W; Gao E; Cheng H; Wu G; Liu Y; Zhang L; Li C; Wang S; Fan M; Zhao H; Zhang F; Tao L
    Theranostics; 2020; 10(12):5623-5640. PubMed ID: 32373236
    [No Abstract]   [Full Text] [Related]  

  • 11. Validation of 18F-fluoro-4-thia-palmitate as a PET probe for myocardial fatty acid oxidation: effects of hypoxia and composition of exogenous fatty acids.
    DeGrado TR; Kitapci MT; Wang S; Ying J; Lopaschuk GD
    J Nucl Med; 2006 Jan; 47(1):173-81. PubMed ID: 16391202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FNDC5 Alleviates Hepatosteatosis by Restoring AMPK/mTOR-Mediated Autophagy, Fatty Acid Oxidation, and Lipogenesis in Mice.
    Liu TY; Xiong XQ; Ren XS; Zhao MX; Shi CX; Wang JJ; Zhou YB; Zhang F; Han Y; Gao XY; Chen Q; Li YH; Kang YM; Zhu GQ
    Diabetes; 2016 Nov; 65(11):3262-3275. PubMed ID: 27504012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells.
    Nasrin N; Wu X; Fortier E; Feng Y; Bare' OC; Chen S; Ren X; Wu Z; Streeper RS; Bordone L
    J Biol Chem; 2010 Oct; 285(42):31995-2002. PubMed ID: 20685656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes.
    Paczkowski M; Silva E; Schoolcraft WB; Krisher RL
    Biol Reprod; 2013 May; 88(5):111. PubMed ID: 23536372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation.
    McFarlan JT; Yoshida Y; Jain SS; Han XX; Snook LA; Lally J; Smith BK; Glatz JF; Luiken JJ; Sayer RA; Tupling AR; Chabowski A; Holloway GP; Bonen A
    J Biol Chem; 2012 Jul; 287(28):23502-16. PubMed ID: 22584574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of mitochondrial fatty acid β-oxidation in human: what can we learn from inborn fatty acid β-oxidation deficiencies?
    Bastin J
    Biochimie; 2014 Jan; 96():113-20. PubMed ID: 23764392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. β-Catenin regulates hepatic mitochondrial function and energy balance in mice.
    Lehwald N; Tao GZ; Jang KY; Papandreou I; Liu B; Liu B; Pysz MA; Willmann JK; Knoefel WT; Denko NC; Sylvester KG
    Gastroenterology; 2012 Sep; 143(3):754-764. PubMed ID: 22684045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating.
    Langhans W; Leitner C; Arnold M
    Am J Physiol Regul Integr Comp Physiol; 2011 Mar; 300(3):R554-65. PubMed ID: 21148477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SUMO-specific protease 2 mediates leptin-induced fatty acid oxidation in skeletal muscle.
    Koo YD; Lee JS; Lee SA; Quaresma PGF; Bhat R; Haynes WG; Park YJ; Kim YB; Chung SS; Park KS
    Metabolism; 2019 Jun; 95():27-35. PubMed ID: 30902749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic Inflexibility with Obesity and the Effects of Fenofibrate on Skeletal Muscle Fatty Acid Oxidation.
    Boyle KE; Friedman JE; Janssen RC; Underkofler C; Houmard JA; Rasouli N
    Horm Metab Res; 2017 Jan; 49(1):50-57. PubMed ID: 28103623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.