These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37011187)

  • 1. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets.
    Li K; Guo Y; Nizkorodov SA; Rudich Y; Angelaki M; Wang X; An T; Perrier S; George C
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2220228120. PubMed ID: 37011187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous Iodide Activation at the Air-Water Interface of Aqueous Droplets.
    Guo Y; Li K; Perrier S; An T; Donaldson DJ; George C
    Environ Sci Technol; 2023 Oct; 57(41):15580-15587. PubMed ID: 37804225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric Intermediates at the Air-Water Interface.
    Enami S; Numadate N; Hama T
    J Phys Chem A; 2024 Jul; ():. PubMed ID: 38968003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the OH Oxidation of Pinonic Acid at the Air-Water Interface Using Field-Induced Droplet Ionization Mass Spectrometry (FIDI-MS).
    Huang Y; Barraza KM; Kenseth CM; Zhao R; Wang C; Beauchamp JL; Seinfeld JH
    J Phys Chem A; 2018 Aug; 122(31):6445-6456. PubMed ID: 30011201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants.
    Surratt JD; Lin YH; Arashiro M; Vizuete WG; Zhang Z; Gold A; Jaspers I; Fry RC
    Res Rep Health Eff Inst; 2019 Mar; 2019(198):1-54. PubMed ID: 31872748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous Oxidation in Aqueous Microdroplets: Water Radical Cation as Primary Oxidizing Agent.
    Qiu L; Cooks RG
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202400118. PubMed ID: 38302696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl radical at the air-water interface.
    Roeselová M; Vieceli J; Dang LX; Garrett BC; Tobias DJ
    J Am Chem Soc; 2004 Dec; 126(50):16308-9. PubMed ID: 15600317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of cloud water droplets on the OH production rate from peroxide photolysis.
    Martins-Costa MTC; Anglada JM; Francisco JS; Ruiz-López MF
    Phys Chem Chem Phys; 2017 Dec; 19(47):31621-31627. PubMed ID: 29164201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas-phase molecular halogen formation from NaCl and NaBr aerosols: when are interface reactions important?
    Thomas JL; Jimenez-Aranda A; Finlayson-Pitts BJ; Dabdub D
    J Phys Chem A; 2006 Feb; 110(5):1859-67. PubMed ID: 16451018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-Dependent Oxidation of Hydroxylated Aldehydes by
    Mekic M; Schaefer T; Hoffmann EH; Aiyuk MBE; Tilgner A; Herrmann H
    J Phys Chem A; 2023 Aug; 127(31):6495-6508. PubMed ID: 37498295
    [No Abstract]   [Full Text] [Related]  

  • 11. Radical chemistry in oxidation flow reactors for atmospheric chemistry research.
    Peng Z; Jimenez JL
    Chem Soc Rev; 2020 May; 49(9):2570-2616. PubMed ID: 32313911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.
    Anglada JM; Martins-Costa M; Francisco JS; Ruiz-López MF
    Acc Chem Res; 2015 Mar; 48(3):575-83. PubMed ID: 25688469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous Formation of Hydrogen Peroxide in Water Microdroplets.
    Heindel JP; Hao H; LaCour RA; Head-Gordon T
    J Phys Chem Lett; 2022 Nov; 13(43):10035-10041. PubMed ID: 36264238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Temperature, Oxygen Level, Ionic Strength, and pH on the Reaction of Benzene with Hydroxyl Radicals at the Air-Water Interface in Comparison to the Bulk Aqueous Phase.
    Heath AA; Valsaraj KT
    J Phys Chem A; 2015 Aug; 119(31):8527-36. PubMed ID: 26158391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of secondary air pollution.
    Lu K; Guo S; Tan Z; Wang H; Shang D; Liu Y; Li X; Wu Z; Hu M; Zhang Y
    Natl Sci Rev; 2019 May; 6(3):579-594. PubMed ID: 34691906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive H-atom abstraction from benzoate by OH-radicals at the air-water interface.
    Enami S; Hoffmann MR; Colussi AJ
    Phys Chem Chem Phys; 2016 Nov; 18(46):31505-31512. PubMed ID: 27827491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second-Order Kinetic Rate Coefficients for the Aqueous-Phase Hydroxyl Radical (OH) Oxidation of Isoprene-Derived Secondary Organic Aerosol Compounds at 298 K.
    Abellar KA; Cope JD; Nguyen TB
    Environ Sci Technol; 2021 Oct; 55(20):13728-13736. PubMed ID: 34587441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous Radical Initiated Oxidation of an Organic Monolayer at the Air-Water Interface as a Proxy for Thin Films on Atmospheric Aerosol Studied with Neutron Reflectometry.
    Jones SH; King MD; Rennie AR; Ward AD; Campbell RA; Hughes AV
    J Phys Chem A; 2023 Oct; 127(42):8922-8934. PubMed ID: 37830513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A light-driven burst of hydroxyl radicals dominates oxidation chemistry in newly activated cloud droplets.
    Paulson SE; Gallimore PJ; Kuang XM; Chen JR; Kalberer M; Gonzalez DH
    Sci Adv; 2019 May; 5(5):eaav7689. PubMed ID: 31049398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkyl Chain Length Dependent Structural and Orientational Transformations of Water at Alcohol-Water Interfaces and Its Relevance to Atmospheric Aerosols.
    Mondal JA; Namboodiri V; Mathi P; Singh AK
    J Phys Chem Lett; 2017 Apr; 8(7):1637-1644. PubMed ID: 28333468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.