These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37011411)

  • 1. Water Charge Transfer Accelerates Criegee Intermediate Reaction with H
    Liang Q; Zhu C; Yang J
    J Am Chem Soc; 2023 May; 145(18):10159-10166. PubMed ID: 37011411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.
    Zhu C; Kumar M; Zhong J; Li L; Francisco JS; Zeng XC
    J Am Chem Soc; 2016 Sep; 138(35):11164-9. PubMed ID: 27509207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into Chemistry on Cloud/Aerosol Water Surfaces.
    Zhong J; Kumar M; Francisco JS; Zeng XC
    Acc Chem Res; 2018 May; 51(5):1229-1237. PubMed ID: 29633837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition between H2O and (H2O)2 reactions with CH2OO/CH3CHOO.
    Lin LC; Chang HT; Chang CH; Chao W; Smith MC; Chang CH; Min Lin J; Takahashi K
    Phys Chem Chem Phys; 2016 Feb; 18(6):4557-68. PubMed ID: 26797528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces.
    Zhong J; Kumar M; Zhu CQ; Francisco JS; Zeng XC
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7740-7744. PubMed ID: 28471069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with Water.
    Long B; Bao JL; Truhlar DG
    J Am Chem Soc; 2016 Nov; 138(43):14409-14422. PubMed ID: 27682870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple evaluations of atmospheric behavior between Criegee intermediates and HCHO: Gas-phase and air-water interface reaction.
    Zhang T; Wen M; Ding C; Zhang Y; Ma X; Wang Z; Lily M; Liu J; Wang R
    J Environ Sci (China); 2023 May; 127():308-319. PubMed ID: 36522063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Scheer AM; Shallcross DE; Rotavera B; Lee EP; Dyke JM; Mok DK; Osborn DL; Percival CJ
    Science; 2013 Apr; 340(6129):177-80. PubMed ID: 23580524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The favorable routes for the hydrolysis of CH
    Wang R; Wen M; Liu S; Lu Y; Makroni L; Muthiah B; Zhang T; Wang Z; Wang Z
    Phys Chem Chem Phys; 2021 Jun; 23(22):12749-12760. PubMed ID: 34041511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric chemistry. Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor.
    Chao W; Hsieh JT; Chang CH; Lin JJ
    Science; 2015 Feb; 347(6223):751-4. PubMed ID: 25569112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing Criegee intermediate reactions with methanol by FTMW spectroscopy.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2020 Jun; 22(24):13756-13763. PubMed ID: 32538397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas-phase and aqueous-surface reaction mechanism of Criegee radicals with serine and nucleation of products: A theoretical study.
    Li L; Zhang R; Ma X; Wei Y; Zhao X; Zhang R; Xu F; Li Y; Huo X; Zhang Q; Wang W
    Chemosphere; 2021 Oct; 280():130709. PubMed ID: 34162082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional Proton Transfer in the Reaction of the Simplest Criegee Intermediate with Water Involving the Formation of Transient H
    Liu J; Liu Y; Yang J; Zeng XC; He X
    J Phys Chem Lett; 2021 Apr; 12(13):3379-3386. PubMed ID: 33784110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates.
    Lee YP
    J Chem Phys; 2015 Jul; 143(2):020901. PubMed ID: 26178082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Mechanisms and Atmospheric Implications of Criegee Intermediate-Alcohol Chemistry in the Gas Phase and Aqueous Surface Environments.
    Tang B; Li Z
    J Phys Chem A; 2020 Oct; 124(41):8585-8593. PubMed ID: 32946233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Insights into Criegee Intermediate-Hydroperoxyl Radical Chemistry.
    Li B; Kumar M; Zhou C; Li L; Francisco JS
    J Am Chem Soc; 2022 Aug; 144(32):14740-14747. PubMed ID: 35921588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactions of Criegee Intermediates with Alcohols at Air-Aqueous Interfaces.
    Enami S; Colussi AJ
    J Phys Chem A; 2017 Jul; 121(27):5175-5182. PubMed ID: 28635281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.
    Huang HL; Chao W; Lin JJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10857-62. PubMed ID: 26283390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of reactions between Criegee intermediates and methanesulfonic acid at the air-water interface.
    Ma X; Zhao X; Huang Z; Wang J; Lv G; Xu F; Zhang Q; Wang W
    Sci Total Environ; 2020 Mar; 707():135804. PubMed ID: 31862431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction of Criegee Intermediate with Nitric Acid at the Air-Water Interface.
    Kumar M; Zhong J; Zeng XC; Francisco JS
    J Am Chem Soc; 2018 Apr; 140(14):4913-4921. PubMed ID: 29564890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.