These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37011560)
1. Insights into the evolution of cobalt use and implications through dynamic analysis of cobalt flows and stocks and the recycling potential of cobalt from urban mines in China during 2000-2021. Qiao D; Dai T; Ma Y; Gao T Waste Manag; 2023 May; 163():122-133. PubMed ID: 37011560 [TBL] [Abstract][Full Text] [Related]
2. Exploring potential opportunities for the efficient development of the cobalt industry in China by quantitatively tracking cobalt flows during the entire life cycle from 2000 to 2021. Qiao D; Dai T; Wang G; Ma Y; Fan H; Gao T; Wen B J Environ Manage; 2022 Sep; 318():115599. PubMed ID: 35780676 [TBL] [Abstract][Full Text] [Related]
3. Circular economy strategies for mitigating metals shortages in electric vehicle batteries under China's carbon-neutral target. Hu Z; Yu B; Daigo I; Tan J; Sun F; Zhang S J Environ Manage; 2024 Feb; 352():120079. PubMed ID: 38242028 [TBL] [Abstract][Full Text] [Related]
4. Tracking and quantifying the cobalt flows in mainland China during 1994-2016: Insights into use, trade and prospective demand. Chen Z; Zhang L; Xu Z Sci Total Environ; 2019 Jul; 672():752-762. PubMed ID: 30974365 [TBL] [Abstract][Full Text] [Related]
5. Assessment of cobalt recycling potential and environmental impact in China from 1994 to 2020. Ma Q; Chen L; Li X; Wang M; Liu L Environ Sci Pollut Res Int; 2023 Feb; 30(10):27469-27482. PubMed ID: 36383313 [TBL] [Abstract][Full Text] [Related]
6. Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: a case study of China. Yang H; Song X; Zhang X; Lu B; Yang D; Li B Environ Sci Pollut Res Int; 2021 Sep; 28(33):45867-45878. PubMed ID: 33884548 [TBL] [Abstract][Full Text] [Related]
7. Exploring the potential for improving material utilization efficiency to secure lithium supply for China's battery supply chain. Sun X; Hao H; Geng Y; Liu Z; Zhao F Fundam Res; 2024 Jan; 4(1):167-177. PubMed ID: 38933841 [TBL] [Abstract][Full Text] [Related]
8. Material flow analysis on the critical resources from spent power lithium-ion batteries under the framework of China's recycling policies. Zong Y; Yao P; Zhang X; Wang J; Song X; Zhao J; Wang Z; Zheng Y Waste Manag; 2023 Oct; 171():463-472. PubMed ID: 37801873 [TBL] [Abstract][Full Text] [Related]
9. Tracking tantalum stocks and flows in China from 2000 to 2021: A material flow analysis. Gao Z; Geng Y; Gao Z; Liang Z; Wei W Heliyon; 2024 Aug; 10(16):e36336. PubMed ID: 39253238 [TBL] [Abstract][Full Text] [Related]
10. Modeling the impact of nickel recycling from batteries on nickel demand during vehicle electrification in China from 2010 to 2050. Zhang H; Liu G; Li J; Qiao D; Zhang S; Li T; Guo X; Liu M Sci Total Environ; 2023 Feb; 859(Pt 1):159964. PubMed ID: 36372177 [TBL] [Abstract][Full Text] [Related]
11. The Impact of Waste Paper Recycling on the Carbon Emissions from China's Paper Industry. Shang D; Diao G; Liu C; Yu L Environ Manage; 2021 May; 67(5):811-821. PubMed ID: 33462675 [TBL] [Abstract][Full Text] [Related]
12. [Evolution of Material Metabolism in China's Pulp and Paper Industry]. Liu X; Yang T; Wu HJ; Yuan ZW Huan Jing Ke Xue; 2021 Aug; 42(8):4061-4070. PubMed ID: 34309293 [TBL] [Abstract][Full Text] [Related]
13. Graphite Flows in the U.S.: Insights into a Key Ingredient of Energy Transition. Zhang J; Liang C; Dunn JB Environ Sci Technol; 2023 Feb; 57(8):3402-3414. PubMed ID: 36791333 [TBL] [Abstract][Full Text] [Related]
14. Recycling potential of cobalt metal from end-of-life new energy passenger vehicles in China. Yang L; Liangfang S; Yanhui L; Zuoyi Y Waste Manag Res; 2024 Dec; 42(12):1179-1187. PubMed ID: 38297507 [TBL] [Abstract][Full Text] [Related]
15. Uncovering the Key Features of Dysprosium Flows and Stocks in China. Xiao S; Geng Y; Pan H; Gao Z; Yao T Environ Sci Technol; 2022 Jun; 56(12):8682-8690. PubMed ID: 35544346 [TBL] [Abstract][Full Text] [Related]
16. China's vehicle electrification impacts on sales, fuel use, and battery material demand through 2050: Optimizing consumer and industry decisions. Ou S; Hsieh IL; He X; Lin Z; Yu R; Zhou Y; Bouchard J iScience; 2021 Nov; 24(11):103375. PubMed ID: 34825140 [TBL] [Abstract][Full Text] [Related]
17. Cobalt in end-of-life products in the EU, where does it end up? - The MaTrace approach. Godoy León MF; Blengini GA; Dewulf J Resour Conserv Recycl; 2020 Jul; 158():104842. PubMed ID: 32624643 [TBL] [Abstract][Full Text] [Related]
18. Material demand and recycling potential driven by wind power expansion in China. Wang Z; Hu C; Wang H; Dai T; Xu X; Liu L J Environ Manage; 2024 Nov; 370():122840. PubMed ID: 39393337 [TBL] [Abstract][Full Text] [Related]
19. Tracking Three Decades of Global Neodymium Stocks and Flows with a Trade-Linked Multiregional Material Flow Analysis. Liu Q; Sun K; Ouyang X; Sen B; Liu L; Dai T; Liu G Environ Sci Technol; 2022 Aug; 56(16):11807-11817. PubMed ID: 35920659 [TBL] [Abstract][Full Text] [Related]
20. Waste paper recycling decision system based on material flow analysis and life cycle assessment: A case study of waste paper recycling from China. Liu M; Tan S; Zhang M; He G; Chen Z; Fu Z; Luan C J Environ Manage; 2020 Feb; 255():109859. PubMed ID: 32063319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]