These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37011601)

  • 21. Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization.
    Guo Y; Qiu J; Guo W
    Nanoscale; 2016 Jan; 8(1):575-80. PubMed ID: 26645099
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interface contact and modulated electronic properties by in-plain strains in a graphene-MoS
    Wang Q; Song Z; Tao J; Jin H; Li S; Wang Y; Liu X; Zhang L
    RSC Adv; 2023 Jan; 13(5):2903-2911. PubMed ID: 36756432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer.
    Cho SB; Chung YC
    Sci Rep; 2016 Jun; 6():27986. PubMed ID: 27301777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interfacial Electronic Properties and Tunable Contact Types in Graphene/Janus MoGeSiN
    Binh NTT; Nguyen CQ; Vu TV; Nguyen CV
    J Phys Chem Lett; 2021 Apr; 12(16):3934-3940. PubMed ID: 33872012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Out-of-Plane Transport of 1T-TaS
    Boix-Constant C; Mañas-Valero S; Córdoba R; Baldoví JJ; Rubio Á; Coronado E
    ACS Nano; 2021 Jul; 15(7):11898-11907. PubMed ID: 34228445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrical characterization of multi-gated WSe
    Chava P; Kateel V; Watanabe K; Taniguchi T; Helm M; Mikolajick T; Erbe A
    Sci Rep; 2024 Mar; 14(1):5813. PubMed ID: 38461196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.
    You B; Wang X; Zheng Z; Mi W
    Phys Chem Chem Phys; 2016 Mar; 18(10):7381-8. PubMed ID: 26899350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Yang Y; Ma J; Yang J; Zhang Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45742-45751. PubMed ID: 36172714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interlayer Interactions in van der Waals Heterostructures: Electron and Phonon Properties.
    Le NB; Huan TD; Woods LM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6286-92. PubMed ID: 26885874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Effect of the Pre-Strain Process on the Strain Engineering of Two-Dimensional Materials and Their van der Waals Heterostructures.
    Han J; Yue X; Shan Y; Chen J; Ekoya BGM; Hu L; Liu R; Qiu Z; Cong C
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrically tunable band gap in strained h-BN/silicene van der Waals heterostructures.
    de Vargas DD; Köhler MH; Baierle RJ
    Phys Chem Chem Phys; 2021 Aug; 23(31):17033-17040. PubMed ID: 34342330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The External Electric Field-Induced Tunability of the Schottky Barrier Height in Graphene/AlN Interface: A Study by First-Principles.
    Liu X; Zhang Z; Lv B; Ding Z; Luo Z
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32916951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of permanent and induced electrostatic dipole moments for Schottky barriers in Janus MXY/graphene heterostructures: a first-principles study.
    Chen YQ; Zhang HH; Wen B; Li XB; Wei XL; Yin WJ; Liu LM; Teobaldi G
    Dalton Trans; 2022 Jun; 51(25):9905-9914. PubMed ID: 35722990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacial contact barrier and charge carrier transport of MoS
    Zhang ZW; Liu ZS; Zhang JJ; Sun BN; Zou DF; Nie GZ; Chen M; Zhao YQ; Jiang S
    Phys Chem Chem Phys; 2023 Mar; 25(13):9548-9558. PubMed ID: 36939192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable Schottky Barrier and Interfacial Electronic Properties in Graphene/ZnSe Heterostructures.
    Xiao W; Liu T; Zhang Y; Zhong Z; Zhang X; Luo Z; Lv B; Zhou X; Zhang Z; Liu X
    Front Chem; 2021; 9():744977. PubMed ID: 34660536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Tunable Carrier Tunneling in Vertical Graphene-WS
    Bai Z; Xiao Y; Luo Q; Li M; Peng G; Zhu Z; Luo F; Zhu M; Qin S; Novoselov K
    ACS Nano; 2022 May; 16(5):7880-7889. PubMed ID: 35506523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy.
    Zuo Z; Xu Z; Zheng R; Khanaki A; Zheng JG; Liu J
    Sci Rep; 2015 Oct; 5():14760. PubMed ID: 26442629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable interlayer coupling and Schottky barrier in graphene and Janus MoSSe heterostructures by applying an external field.
    Li Y; Wang J; Zhou B; Wang F; Miao Y; Wei J; Zhang B; Zhang K
    Phys Chem Chem Phys; 2018 Oct; 20(37):24109-24116. PubMed ID: 30204181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.
    Wang X; Zebarjadi M; Esfarjani K
    Nanoscale; 2016 Aug; 8(31):14695-704. PubMed ID: 27314610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dipole controlled Schottky barrier in the blue-phosphorene-phase of GeSe based van der Waals heterostructures.
    Peng L; Cui Y; Sun L; Du J; Wang S; Zhang S; Huang Y
    Nanoscale Horiz; 2019 Mar; 4(2):480-489. PubMed ID: 32254101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.