BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37011608)

  • 1. Photoisomerization of Heptamethine Cyanine Dyes Results in Red-Emissive Species: Implications for Near-IR, Single-Molecule, and Super-Resolution Fluorescence Spectroscopy and Imaging.
    Sandberg E; Piguet J; Kostiv U; Baryshnikov G; Liu H; Widengren J
    J Phys Chem B; 2023 Apr; 127(14):3208-3222. PubMed ID: 37011608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Fluorescence Fluctuation and Spectrofluorometric Measurements Reveal a Red-Shifted, Near-IR Emissive Photo-Isomerized Form of Cyanine 5.
    Sandberg E; Piguet J; Liu H; Widengren J
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence Bar-Coding and Flowmetry Based on Dark State Transitions in Fluorescence Emitters.
    Sandberg E; Demirbay B; Kulkarni A; Liu H; Piguet J; Widengren J
    J Phys Chem B; 2024 Jan; 128(1):125-136. PubMed ID: 38127267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Cyanine Conformational Restraint in the Near-Infrared Range.
    Matikonda SS; Hammersley G; Kumari N; Grabenhorst L; Glembockyte V; Tinnefeld P; Ivanic J; Levitus M; Schnermann MJ
    J Org Chem; 2020 May; 85(9):5907-5915. PubMed ID: 32275153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indolizine-Cyanine Dyes: Near Infrared Emissive Cyanine Dyes with Increased Stokes Shifts.
    Gayton J; Autry SA; Meador W; Parkin SR; Hill GA; Hammer NI; Delcamp JH
    J Org Chem; 2019 Jan; 84(2):687-697. PubMed ID: 30540461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activatable organic near-infrared fluorescent probes based on a bacteriochlorin platform: synthesis and multicolor in vivo imaging with a single excitation.
    Harada T; Sano K; Sato K; Watanabe R; Yu Z; Hanaoka H; Nakajima T; Choyke PL; Ptaszek M; Kobayashi H
    Bioconjug Chem; 2014 Feb; 25(2):362-9. PubMed ID: 24450401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe.
    Liu CH; Qi FP; Wen FB; Long LP; Liu AJ; Yang RH
    Methods Appl Fluoresc; 2018 Jan; 6(2):024001. PubMed ID: 29350185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adjustable Fluorescence Emission of J-Aggregated Tricarbocyanine in the Near-Infrared-II Region.
    Dar N; Weissman H; Ankri R
    J Phys Chem B; 2023 Sep; 127(37):7988-7995. PubMed ID: 37682586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitization of upconverting nanoparticles with a NIR-emissive cyanine dye using a micellar encapsulation approach.
    Saleh MI; Panas ID; Frenzel F; Würth C; Rühle B; Slominskii YL; Demchenko A; Resch-Genger U
    Methods Appl Fluoresc; 2019 Jan; 7(1):014003. PubMed ID: 30641489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared fluorescence imaging using organic dye nanoparticles.
    Yu J; Zhang X; Hao X; Zhang X; Zhou M; Lee CS; Chen X
    Biomaterials; 2014 Mar; 35(10):3356-64. PubMed ID: 24461324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research progress of near-infrared fluorescence probes based on indole heptamethine cyanine dyes in vivo and in vitro.
    Sun C; Du W; Wang B; Dong B; Wang B
    BMC Chem; 2020 Dec; 14(1):21. PubMed ID: 32259133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave synthesis of near infrared heptamethine cyanine dye.
    Winstead AJ; Williams R; Hart K; Fleming N; Kennedy A
    J Microw Power Electromagn Energy; 2008; 42(1):35-41. PubMed ID: 19227081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repurposing Cyanine NIR-I Dyes Accelerates Clinical Translation of Near-Infrared-II (NIR-II) Bioimaging.
    Zhu S; Hu Z; Tian R; Yung BC; Yang Q; Zhao S; Kiesewetter DO; Niu G; Sun H; Antaris AL; Chen X
    Adv Mater; 2018 Jul; ():e1802546. PubMed ID: 29985542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Infrared-II Cyanine/Polymethine Dyes, Current State and Perspective.
    Du Y; Liu X; Zhu S
    Front Chem; 2021; 9():718709. PubMed ID: 34395384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development.
    Behnke T; Mathejczyk JE; Brehm R; Würth C; Gomes FR; Dullin C; Napp J; Alves F; Resch-Genger U
    Biomaterials; 2013 Jan; 34(1):160-70. PubMed ID: 23072943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trans-cis isomerization kinetics of cyanine dyes reports on the folding states of exogeneous RNA G-quadruplexes in live cells.
    Kitamura A; Tornmalm J; Demirbay B; Piguet J; Kinjo M; Widengren J
    Nucleic Acids Res; 2023 Mar; 51(5):e27. PubMed ID: 36651281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanine-Based Polymer Dots with Long-Wavelength Excitation and Near-Infrared Fluorescence beyond 900 nm for
    Liu MH; Chen TC; Vicente JR; Yao CN; Yang YC; Chen CP; Lin PW; Ho YC; Chen J; Lin SY; Chan YH
    ACS Appl Bio Mater; 2020 Jun; 3(6):3846-3858. PubMed ID: 35025255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor-targeted small molecule for dual-modal imaging-guided phototherapy upon near-infrared excitation.
    Meng X; Li W; Sun Z; Zhang J; Zhou L; Deng G; Gong P; Cai L
    J Mater Chem B; 2017 Dec; 5(47):9405-9411. PubMed ID: 32264543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free monitoring of ambient oxygenation and redox conditions using the photodynamics of flavin compounds and transient state (TRAST) spectroscopy.
    Tornmalm J; Widengren J
    Methods; 2018 May; 140-141():178-187. PubMed ID: 29179988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.