These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The Parallel Reaction Monitoring-Parallel Accumulation-Serial Fragmentation (prm-PASEF) Approach for Multiplexed Absolute Quantitation of Proteins in Human Plasma. Brzhozovskiy A; Kononikhin A; Bugrova AE; Kovalev GI; Schmit PO; Kruppa G; Nikolaev EN; Borchers CH Anal Chem; 2022 Feb; 94(4):2016-2022. PubMed ID: 35040635 [TBL] [Abstract][Full Text] [Related]
3. The clinical potential of prm-PASEF mass spectrometry. Lesur A; Dittmar G Expert Rev Proteomics; 2021 Feb; 18(2):75-82. PubMed ID: 33874828 [TBL] [Abstract][Full Text] [Related]
4. Four-dimensional proteomics analysis of human cerebrospinal fluid with trapped ion mobility spectrometry using PASEF. Mun DG; Budhraja R; Bhat FA; Zenka RM; Johnson KL; Moghekar A; Pandey A Proteomics; 2023 May; 23(10):e2200507. PubMed ID: 36752121 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Data-Dependent Acquisition, Data-Independent Acquisition, and Parallel Reaction Monitoring in Trapped Ion Mobility Spectrometry-Time-of-Flight Tandem Mass Spectrometry-Based Lipidomics. Rudt E; Feldhaus M; Margraf CG; Schlehuber S; Schubert A; Heuckeroth S; Karst U; Jeck V; Meyer SW; Korf A; Hayen H Anal Chem; 2023 Jun; 95(25):9488-9496. PubMed ID: 37307407 [TBL] [Abstract][Full Text] [Related]
6. High-Throughput Mass Spectrometry-Based Proteomics with dia-PASEF. Skowronek P; Meier F Methods Mol Biol; 2022; 2456():15-27. PubMed ID: 35612732 [TBL] [Abstract][Full Text] [Related]
7. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Meier F; Brunner AD; Koch S; Koch H; Lubeck M; Krause M; Goedecke N; Decker J; Kosinski T; Park MA; Bache N; Hoerning O; Cox J; Räther O; Mann M Mol Cell Proteomics; 2018 Dec; 17(12):2534-2545. PubMed ID: 30385480 [TBL] [Abstract][Full Text] [Related]
8. An automated workflow based on data independent acquisition for practical and high-throughput personalized assay development and minimal residual disease monitoring in multiple myeloma patients. Wijnands C; Armony G; Noori S; Gloerich J; Bonifay V; Caillon H; Luider TM; Brehmer S; Pfennig L; Srikumar T; Trede D; Kruppa G; Dejoie T; van Duijn MM; van Gool AJ; Jacobs JFM; Wessels HJCT Clin Chem Lab Med; 2024 Nov; 62(12):2507-2518. PubMed ID: 38872409 [TBL] [Abstract][Full Text] [Related]
9. Rapid and In-Depth Coverage of the (Phospho-)Proteome With Deep Libraries and Optimal Window Design for dia-PASEF. Skowronek P; Thielert M; Voytik E; Tanzer MC; Hansen FM; Willems S; Karayel O; Brunner AD; Meier F; Mann M Mol Cell Proteomics; 2022 Sep; 21(9):100279. PubMed ID: 35944843 [TBL] [Abstract][Full Text] [Related]
10. Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant. Yu F; Haynes SE; Teo GC; Avtonomov DM; Polasky DA; Nesvizhskii AI Mol Cell Proteomics; 2020 Sep; 19(9):1575-1585. PubMed ID: 32616513 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of Proteome Coverage by Ion Mobility Fractionation Coupled to PASEF on a TIMS-QTOF Instrument. Guergues J; Wohlfahrt J; Stevens SM J Proteome Res; 2022 Aug; 21(8):2036-2044. PubMed ID: 35876248 [TBL] [Abstract][Full Text] [Related]
12. Fast proteomics with dia-PASEF and analytical flow-rate chromatography. Szyrwiel L; Gille C; Mülleder M; Demichev V; Ralser M Proteomics; 2024 Jan; 24(1-2):e2300100. PubMed ID: 37287406 [TBL] [Abstract][Full Text] [Related]
14. Synchro-PASEF Allows Precursor-Specific Fragment Ion Extraction and Interference Removal in Data-Independent Acquisition. Skowronek P; Krohs F; Lubeck M; Wallmann G; Itang ECM; Koval P; Wahle M; Thielert M; Meier F; Willems S; Raether O; Mann M Mol Cell Proteomics; 2023 Feb; 22(2):100489. PubMed ID: 36566012 [TBL] [Abstract][Full Text] [Related]
15. Increasing taxonomic and functional characterization of host-microbiome interactions by DIA-PASEF metaproteomics. Gómez-Varela D; Xian F; Grundtner S; Sondermann JR; Carta G; Schmidt M Front Microbiol; 2023; 14():1258703. PubMed ID: 37908546 [TBL] [Abstract][Full Text] [Related]
16. A semi-automated workflow for DIA-based global discovery to pathway-driven PRM analysis. Guergues J; Wohlfahrt J; Koomen JM; Krieger JR; Varma S; Stevens SM Proteomics; 2024 Sep; ():e2400129. PubMed ID: 39235396 [TBL] [Abstract][Full Text] [Related]
17. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Demichev V; Szyrwiel L; Yu F; Teo GC; Rosenberger G; Niewienda A; Ludwig D; Decker J; Kaspar-Schoenefeld S; Lilley KS; Mülleder M; Nesvizhskii AI; Ralser M Nat Commun; 2022 Jul; 13(1):3944. PubMed ID: 35803928 [TBL] [Abstract][Full Text] [Related]
18. Wideband PRM: Highly Accurate and Sensitive Method for High-Throughput Targeted Proteomics. Nam D; Ji M; Kang C; Kim H; Yang H; Bok KH; Bae J; Hong J; Lee SW Anal Chem; 2024 Jun; 96(25):10219-10227. PubMed ID: 38864836 [TBL] [Abstract][Full Text] [Related]
19. Vacuum Insulated Probe Heated Electrospray Ionization Source Enhances Microflow Rate Chromatography Signals in the Bruker timsTOF Mass Spectrometer. Midha MK; Kapil C; Maes M; Baxter DH; Morrone SR; Prokop TJ; Moritz RL J Proteome Res; 2023 Jul; 22(7):2525-2537. PubMed ID: 37294184 [TBL] [Abstract][Full Text] [Related]
20. Mobility-resolved broadband dissociation and parallel reaction monitoring for laser desorption/ionization-mass spectrometry - Tattoo pigment identification supported by trapped ion mobility spectrometry. Wolf C; Behrens A; Brungs C; Mende ED; Lenz M; Piechutta PC; Roblick C; Karst U Anal Chim Acta; 2023 Feb; 1242():340796. PubMed ID: 36657890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]