These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37012248)

  • 1. Towards the ground state of molecules via diffusion Monte Carlo on neural networks.
    Ren W; Fu W; Wu X; Chen J
    Nat Commun; 2023 Apr; 14(1):1860. PubMed ID: 37012248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical Schemes for Accurate Forces in Quantum Monte Carlo.
    Moroni S; Saccani S; Filippi C
    J Chem Theory Comput; 2014 Nov; 10(11):4823-9. PubMed ID: 26584369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new scheme for fixed node diffusion quantum Monte Carlo with pseudopotentials: Improving reproducibility and reducing the trial-wave-function bias.
    Zen A; Brandenburg JG; Michaelides A; Alfè D
    J Chem Phys; 2019 Oct; 151(13):134105. PubMed ID: 31594339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Space-warp coordinate transformation for efficient ionic force calculations in quantum Monte Carlo.
    Nakano K; Raghav A; Sorella S
    J Chem Phys; 2022 Jan; 156(3):034101. PubMed ID: 35065566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Monte Carlo study of first-row atoms using transcorrelated variational Monte Carlo trial functions.
    Prasad R; Umezawa N; Domin D; Salomon-Ferrer R; Lester WA
    J Chem Phys; 2007 Apr; 126(16):164109. PubMed ID: 17477591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo.
    Bouabça T; Braïda B; Caffarel M
    J Chem Phys; 2010 Jul; 133(4):044111. PubMed ID: 20687637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interatomic force from neural network based variational quantum Monte Carlo.
    Qian Y; Fu W; Ren W; Chen J
    J Chem Phys; 2022 Oct; 157(16):164104. PubMed ID: 36319420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular hydrogen adsorbed on benzene: Insights from a quantum Monte Carlo study.
    Beaudet TD; Casula M; Kim J; Sorella S; Martin RM
    J Chem Phys; 2008 Oct; 129(16):164711. PubMed ID: 19045302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solids-A case study in diamond.
    Benali A; Gasperich K; Jordan KD; Applencourt T; Luo Y; Bennett MC; Krogel JT; Shulenburger L; Kent PRC; Loos PF; Scemama A; Caffarel M
    J Chem Phys; 2020 Nov; 153(18):184111. PubMed ID: 33187421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation energy of the water dimer from quantum Monte Carlo calculations.
    Gurtubay IG; Needs RJ
    J Chem Phys; 2007 Sep; 127(12):124306. PubMed ID: 17902902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate forces in quantum Monte Carlo calculations with nonlocal pseudopotentials.
    Badinski A; Needs RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036707. PubMed ID: 17930361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rydberg states with quantum Monte Carlo.
    Bande A; Lüchow A; Della Sala F; Görling A
    J Chem Phys; 2006 Mar; 124(11):114114. PubMed ID: 16555881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical accuracy from quantum Monte Carlo for the benzene dimer.
    Azadi S; Cohen RE
    J Chem Phys; 2015 Sep; 143(10):104301. PubMed ID: 26374029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the fixed-node error in quantum Monte Carlo calculations of electronic transitions: the case of the singlet n-->pi* (CO) transition of the acrolein.
    Bouabça T; Ben Amor N; Maynau D; Caffarel M
    J Chem Phys; 2009 Mar; 130(11):114107. PubMed ID: 19317531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-orthogonal determinants in multi-Slater-Jastrow trial wave functions for fixed-node diffusion Monte Carlo.
    Pathak S; Wagner LK
    J Chem Phys; 2018 Dec; 149(23):234104. PubMed ID: 30579315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliable radical stabilization energies from diffusion Monte Carlo calculations.
    Per MC; Fletcher EK; Swann ET; Cleland DM
    J Comput Chem; 2020 Oct; 41(27):2378-2382. PubMed ID: 32780429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhomogeneous backflow transformations in quantum Monte Carlo calculations.
    López Ríos P; Ma A; Drummond ND; Towler MD; Needs RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066701. PubMed ID: 17280171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Singlet-triplet gaps in diradicals obtained with diffusion quantum Monte Carlo using a Slater-Jastrow trial wavefunction with a minimum number of determinants.
    Zhou X; Wang F
    Phys Chem Chem Phys; 2019 Sep; 21(36):20422-20431. PubMed ID: 31501831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scheme for adding electron-nucleus cusps to Gaussian orbitals.
    Ma A; Towler MD; Drummond ND; Needs RJ
    J Chem Phys; 2005 Jun; 122(22):224322. PubMed ID: 15974683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes.
    Scemama A; Benali A; Jacquemin D; Caffarel M; Loos PF
    J Chem Phys; 2018 Jul; 149(3):034108. PubMed ID: 30037241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.