These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 37012298)
1. Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Fito J; Abewaa M; Mengistu A; Angassa K; Ambaye AD; Moyo W; Nkambule T Sci Rep; 2023 Apr; 13(1):5427. PubMed ID: 37012298 [TBL] [Abstract][Full Text] [Related]
2. The application of Rumex abyssinicus based activated carbon for Brilliant Blue Reactive dye adsorption from aqueous solution. Mengistu A; Abewaa M; Adino E; Gizachew E; Abdu J BMC Chem; 2023 Jul; 17(1):82. PubMed ID: 37464422 [TBL] [Abstract][Full Text] [Related]
3. Preparation of Rumex abyssinicus based biosorbent for the removal of methyl orange from aqueous solution. Abewaa M; Adino E; Mengistu A Heliyon; 2023 Dec; 9(12):e22447. PubMed ID: 38094050 [TBL] [Abstract][Full Text] [Related]
4. High surface area activated carbon from a pineapple ( Hapiz A; Jawad AH; Wilson LD; ALOthman ZA Int J Phytoremediation; 2024 Feb; 26(3):324-338. PubMed ID: 37545130 [TBL] [Abstract][Full Text] [Related]
5. Adsorptive removal of malachite green dye from aqueous solution using Rumex abyssinicus derived activated carbon. Abewaa M; Mengistu A; Takele T; Fito J; Nkambule T Sci Rep; 2023 Sep; 13(1):14701. PubMed ID: 37679475 [TBL] [Abstract][Full Text] [Related]
6. Optimization and mechanistic approach for removal of crystal violet and methylene blue dyes Hapiz A; Jawad AH; Wilson LD; ALOthman ZA; Abdulhameed AS; Algburi S Int J Phytoremediation; 2024; 26(4):579-593. PubMed ID: 37740456 [TBL] [Abstract][Full Text] [Related]
7. The application of Rumex Abysinicus derived activated carbon/bentonite clay/graphene oxide/iron oxide nanocomposite for removal of chromium from aqueous solution. Tibebu S; Kassahun E; Ale TH; Worku A; Sime T; Berhanu AA; Akino B; Hailu AM; Ayana LW; Shibeshi A; Mohammed MA; Lema NK; Ammona AA; Tebeje A; Korsa G; Ayele A; Nuru S; Kebede S; Ayalneh S; Angassa K; Weldmichael TG; Ashebir H Sci Rep; 2024 Aug; 14(1):19280. PubMed ID: 39164377 [TBL] [Abstract][Full Text] [Related]
8. Tropical fruit wastes including durian seeds and rambutan peels as a precursor for producing activated carbon using H Tamjid Farki NNANL; Abdulhameed AS; Surip SN; ALOthman ZA; Jawad AH Int J Phytoremediation; 2023; 25(12):1567-1578. PubMed ID: 36794599 [TBL] [Abstract][Full Text] [Related]
9. Fruit peel-based mesoporous activated carbon Yousef TA; Sahu UK; Jawad AH; Abd Malek NN; Al Duaij OK; ALOthman ZA Int J Phytoremediation; 2023; 25(9):1142-1154. PubMed ID: 36305491 [TBL] [Abstract][Full Text] [Related]
10. Deep insights into kinetics, optimization and thermodynamic estimates of methylene blue adsorption from aqueous solution onto coffee husk (Coffee arabica) activated carbon. Deivasigamani P; Senthil Kumar P; Sundaraman S; Soosai MR; Renita AA; M K; Bektenov N; Baigenzhenov O; D V; Kumar J A Environ Res; 2023 Nov; 236(Pt 2):116735. PubMed ID: 37517489 [TBL] [Abstract][Full Text] [Related]
11. Removal of methylene blue dye from aqueous solution using an efficient chitosan-pectin bio-adsorbent: kinetics and isotherm studies. Mohrazi A; Ghasemi-Fasaei R Environ Monit Assess; 2023 Jan; 195(2):339. PubMed ID: 36705863 [TBL] [Abstract][Full Text] [Related]
12. Francis AO; Kevin OS; Ahmad Zaini MA Int J Phytoremediation; 2023; 25(12):1625-1635. PubMed ID: 36823750 [TBL] [Abstract][Full Text] [Related]
13. Application of Optimization Response Surface for the Adsorption of Methylene Blue Dye onto Zinc-coated Activated Carbon. Altıntıg E; Sarıcı B; Bozdag D; Over Ozcelik T; Karakaş M; Altundag H Environ Monit Assess; 2024 Jul; 196(7):682. PubMed ID: 38954055 [TBL] [Abstract][Full Text] [Related]
14. Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology. Roosta M; Ghaedi M; Daneshfar A; Sahraei R; Asghari A Ultrason Sonochem; 2014 Jan; 21(1):242-52. PubMed ID: 23856588 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of modified activated carbon (MgO/AC) for methylene blue adsorption: optimization, equilibrium isotherm and kinetic studies. Ghalehkhondabi V; Fazlali A; Ketabi K Water Sci Technol; 2021 Apr; 83(7):1548-1565. PubMed ID: 33843742 [TBL] [Abstract][Full Text] [Related]
16. Adsorption parameters optimization of spent coffee ground biochar for methylene blue removal using response surface methodology. Nagarajan T; Binti Mohd Fekeri NH; Raju G; Shanmugan S; Jeppu G; Walvekar R; Rustagi S; Khalid M Chemosphere; 2024 Sep; 364():143242. PubMed ID: 39233300 [TBL] [Abstract][Full Text] [Related]
17. Activated carbon-alginate beads impregnated with surfactant as sustainable adsorbent for efficient removal of methylene blue. Alamin NU; Khan AS; Nasrullah A; Iqbal J; Ullah Z; Din IU; Muhammad N; Khan SZ Int J Biol Macromol; 2021 Apr; 176():233-243. PubMed ID: 33549668 [TBL] [Abstract][Full Text] [Related]
18. Enhanced adsorption of methylene blue from textile wastewater by using natural and artificial zeolite. Turp SM; Turp GA; Ekinci N; Özdemir S Water Sci Technol; 2020 Aug; 82(3):513-523. PubMed ID: 32960796 [TBL] [Abstract][Full Text] [Related]
20. Adsorption study of Methylene blue dye: an effluents from local textile industry using Mustapha OR; Osobamiro TM; Sanyaolu NO; Alabi OM Int J Phytoremediation; 2023; 25(10):1348-1358. PubMed ID: 36597778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]