These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37012374)

  • 1. Afferent volley from the digital nerve induces short-latency facilitation of perceptual sensitivity and primary sensory cortex excitability.
    Tsujinaka R; Oda H; Fukuda S; Hamada N; Matsuoka M; Hiraoka K
    Exp Brain Res; 2023 May; 241(5):1339-1351. PubMed ID: 37012374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of perceptual sensitivity to digital nerve stimulation induced by afferent volley from digital nerve of contralateral homologous finger.
    Fukuda S; Tsujinaka R; Oda H; Hamada N; Matsuoka M; Hiraoka K
    Neuroreport; 2023 May; 34(8):436-440. PubMed ID: 37096762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. No relation between afferent facilitation induced by digital nerve stimulation and the latency of cutaneomuscular reflexes and somatosensory evoked magnetic fields.
    Kojima S; Onishi H; Sugawara K; Miyaguchi S; Kirimoto H; Tamaki H; Shirozu H; Kameyama S
    Front Hum Neurosci; 2014; 8():1023. PubMed ID: 25566038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-latency afferent inhibition determined by the sensory afferent volley.
    Bailey AZ; Asmussen MJ; Nelson AJ
    J Neurophysiol; 2016 Aug; 116(2):637-44. PubMed ID: 27226451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma synchronization in human primary somatosensory cortex as revealed by somatosensory evoked neuromagnetic fields.
    Tecchio F; Babiloni C; Zappasodi F; Vecchio F; Pizzella V; Romani GL; Rossini PM
    Brain Res; 2003 Oct; 986(1-2):63-70. PubMed ID: 12965230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective attention regulates spatial and intensity information processing in the human primary somatosensory cortex.
    Iguchi Y; Hoshi Y; Tanosaki M; Taira M; Hashimoto I
    Neuroreport; 2002 Dec; 13(17):2335-9. PubMed ID: 12488822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centrifugal regulation of task-relevant somatosensory signals to trigger a voluntary movement.
    Kida T; Wasaka T; Nakata H; Kakigi R
    Exp Brain Res; 2006 Mar; 169(3):289-301. PubMed ID: 16307265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological sex differences in afferent-mediated inhibition of motor responses evoked by TMS.
    Turco CV; Rehsi RS; Locke MB; Nelson AJ
    Brain Res; 2021 Nov; 1771():147657. PubMed ID: 34509460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Projection of thenar muscle afferents to frontal and parietal cortex of human subjects.
    Gandevia SC; Burke D
    Electroencephalogr Clin Neurophysiol; 1990; 77(5):353-61. PubMed ID: 1697527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortico-striatal relations under conditions of interaction of monomodal afferent volleys.
    Oganesyan GA; Tolkunov BF
    Neurosci Behav Physiol; 1985; 15(4):304-9. PubMed ID: 4058722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of short-latency afferent inhibition and emergence of afferent facilitation following neuromuscular electrical stimulation.
    Mang CS; Bergquist AJ; Roshko SM; Collins DF
    Neurosci Lett; 2012 Oct; 529(1):80-5. PubMed ID: 22985510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings.
    Allison T; McCarthy G; Wood CC; Jones SJ
    Brain; 1991 Dec; 114 ( Pt 6)():2465-503. PubMed ID: 1782527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Verbal working memory modulates afferent circuits in motor cortex.
    Suzuki LY; Meehan SK
    Eur J Neurosci; 2018 Nov; 48(10):3117-3125. PubMed ID: 30218611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LTP-like changes induced by paired associative stimulation of the primary somatosensory cortex in humans: source analysis and associated changes in behaviour.
    Litvak V; Zeller D; Oostenveld R; Maris E; Cohen A; Schramm A; Gentner R; Zaaroor M; Pratt H; Classen J
    Eur J Neurosci; 2007 May; 25(9):2862-74. PubMed ID: 17561848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays.
    Kaiju T; Doi K; Yokota M; Watanabe K; Inoue M; Ando H; Takahashi K; Yoshida F; Hirata M; Suzuki T
    Front Neural Circuits; 2017; 11():20. PubMed ID: 28442997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitation of motor evoked potentials by somatosensory afferent stimulation.
    Deletis V; Schild JH; Berić A; Dimitrijević MR
    Electroencephalogr Clin Neurophysiol; 1992 Oct; 85(5):302-10. PubMed ID: 1385090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined spinal cord monitoring using neurogenic mixed evoked potentials and collision techniques.
    Péréon Y; Nguyen The Tich S; Delécrin J; Pham Dang C; Bodin J; Drouet JC; Passuti N
    Spine (Phila Pa 1976); 2002 Jul; 27(14):1571-6. PubMed ID: 12131720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Peripheral Nerve Stimulation and Controllable Pulse Parameter Transcranial Magnetic Stimulation to Probe Sensorimotor Control and Learning.
    Graham KR; Hayes KD; Meehan SK
    J Vis Exp; 2023 Apr; (194):. PubMed ID: 37154553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cortico-striatal relations in the interaction of monomodal afferent volleys].
    Oganesian GA; Tolkunov BF
    Fiziol Zh SSSR Im I M Sechenova; 1983 Feb; 69(2):161-6. PubMed ID: 6840340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Latencies of peripheral nerve and cerebral evoked responses to air-puff and electrical stimuli.
    Hashimoto I; Yoshikawa K; Sasaki M
    Muscle Nerve; 1990 Dec; 13(12):1099-104. PubMed ID: 2266984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.