These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37012446)
1. Influence of Data Augmentation Strategies on the Segmentation of Oral Histological Images Using Fully Convolutional Neural Networks. Dos Santos DFD; de Faria PR; Travençolo BAN; do Nascimento MZ J Digit Imaging; 2023 Aug; 36(4):1608-1623. PubMed ID: 37012446 [TBL] [Abstract][Full Text] [Related]
2. A data augmentation approach to train fully convolutional networks for left ventricle segmentation. Lin A; Wu J; Yang X Magn Reson Imaging; 2020 Feb; 66():152-164. PubMed ID: 31476360 [TBL] [Abstract][Full Text] [Related]
3. Convolutional neural network for automated mass segmentation in mammography. Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952 [TBL] [Abstract][Full Text] [Related]
4. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound. Gómez-Flores W; Coelho de Albuquerque Pereira W Comput Biol Med; 2020 Nov; 126():104036. PubMed ID: 33059238 [TBL] [Abstract][Full Text] [Related]
5. Segmentation of liver tumors with abdominal computed tomography using fully convolutional networks. Chen CI; Lu NH; Huang YH; Liu KY; Hsu SY; Matsushima A; Wang YM; Chen TB J Xray Sci Technol; 2022; 30(5):953-966. PubMed ID: 35754254 [TBL] [Abstract][Full Text] [Related]
6. Automated detection of premalignant oral lesions on whole slide images using convolutional neural networks. Liu Y; Bilodeau E; Pollack B; Batmanghelich K Oral Oncol; 2022 Nov; 134():106109. PubMed ID: 36126604 [TBL] [Abstract][Full Text] [Related]
7. A segmentation method combining probability map and boundary based on multiple fully convolutional networks and repetitive training. Yin W; Hu Y; Yi S; He J Phys Med Biol; 2019 Sep; 64(18):185003. PubMed ID: 30808019 [TBL] [Abstract][Full Text] [Related]
8. Automatic segmentation and classification of Papanicolaou-stained cells and dataset for oral cancer detection. Rönnau MM; Lepper TW; Guedes IC; Espinosa ALF; Rados PV; Oliveira MM Comput Biol Med; 2024 Sep; 180():108967. PubMed ID: 39111154 [TBL] [Abstract][Full Text] [Related]
9. CarveMix: A simple data augmentation method for brain lesion segmentation. Zhang X; Liu C; Ou N; Zeng X; Zhuo Z; Duan Y; Xiong X; Yu Y; Liu Z; Liu Y; Ye C Neuroimage; 2023 May; 271():120041. PubMed ID: 36933626 [TBL] [Abstract][Full Text] [Related]
10. The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification. Altini N; Marvulli TM; Zito FA; Caputo M; Tommasi S; Azzariti A; Brunetti A; Prencipe B; Mattioli E; De Summa S; Bevilacqua V Comput Methods Programs Biomed; 2023 Jun; 234():107511. PubMed ID: 37011426 [TBL] [Abstract][Full Text] [Related]
11. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
12. A fully convolutional network (FCN) based automated ischemic stroke segment method using chemical exchange saturation transfer imaging. Zhao Y; Chen Y; Chen Y; Zhang L; Wang X; He X Med Phys; 2022 Mar; 49(3):1635-1647. PubMed ID: 35083756 [TBL] [Abstract][Full Text] [Related]
13. A machine learning model for separating epithelial and stromal regions in oral cavity squamous cell carcinomas using H&E-stained histology images: A multi-center, retrospective study. Wu Y; Koyuncu CF; Toro P; Corredor G; Feng Q; Buzzy C; Old M; Teknos T; Connelly ST; Jordan RC; Lang Kuhs KA; Lu C; Lewis JS; Madabhushi A Oral Oncol; 2022 Aug; 131():105942. PubMed ID: 35689952 [TBL] [Abstract][Full Text] [Related]
14. A CNN-based approach for joint segmentation and quantification of nuclei and NORs in AgNOR-stained images. Rönnau MM; Lepper TW; Amaral LN; Rados PV; Oliveira MM Comput Methods Programs Biomed; 2023 Dec; 242():107788. PubMed ID: 37738838 [TBL] [Abstract][Full Text] [Related]
15. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup. Liu Y; Zhang M; Zhong Z; Zeng X Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788 [TBL] [Abstract][Full Text] [Related]
16. OralEpitheliumDB: A Dataset for Oral Epithelial Dysplasia Image Segmentation and Classification. Silva AB; Martins AS; Tosta TAA; Loyola AM; Cardoso SV; Neves LA; de Faria PR; do Nascimento MZ J Imaging Inform Med; 2024 Aug; 37(4):1691-1710. PubMed ID: 38409608 [TBL] [Abstract][Full Text] [Related]
17. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images. Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913 [TBL] [Abstract][Full Text] [Related]
18. Automated glioma grading on conventional MRI images using deep convolutional neural networks. Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478 [TBL] [Abstract][Full Text] [Related]
19. [Automatic Segmentation of Digital Pathology Slides Based on Unsupervised Learning]. Qin HY; Deng Y; Zhou YY; Liu HH; Li L; Zhou QQ; Mei J; Bu H; Bao J Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Sep; 52(5):813-818. PubMed ID: 34622598 [TBL] [Abstract][Full Text] [Related]
20. Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation. Sugino T; Roth HR; Oda M; Kin T; Saito N; Nakajima Y; Mori K Med Phys; 2021 Nov; 48(11):7215-7227. PubMed ID: 34453333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]