These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37012512)

  • 1. Antifungal alkaloids from Mahonia fortunei against pathogens of postharvest fruit.
    Wang XN; Wang ZJ; Zhao Y; Wang H; Xiang ML; Liu YY; Zhao LX; Luo XD
    Nat Prod Bioprospect; 2023 Apr; 13(1):10. PubMed ID: 37012512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A.
    Liu X; Wang J; Gou P; Mao C; Zhu ZR; Li H
    Int J Food Microbiol; 2007 Nov; 119(3):223-9. PubMed ID: 17765990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of thymol and linalool fumigation on postharvest diseases of table grapes.
    Shin MH; Kim JH; Choi HW; Keum YS; Chun SC
    Mycobiology; 2014 Sep; 42(3):262-8. PubMed ID: 25346603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Plant Extracts to Control Postharvest Gray Mold and Susceptibility of Apple Fruits to
    Šernaitė L; Rasiukevičiūtė N; Valiuškaitė A
    Foods; 2020 Oct; 9(10):. PubMed ID: 33050259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal effects of lycorine on Botrytis cinerea and possible mechanisms.
    Zhao S; Guo Y; Wang Q; An B
    Biotechnol Lett; 2021 Jul; 43(7):1503-1512. PubMed ID: 33856593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential value of small-molecule organic acids for the control of postharvest gray mold caused by Botrytis cinerea.
    Wang Y; Qiao Y; Zhang M; Ma Z; Xue Y; Mi Q; Wang A; Feng J
    Pestic Biochem Physiol; 2021 Aug; 177():104884. PubMed ID: 34301352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes.
    Yang J; Chen YZ; Yu-Xuan W; Tao L; Zhang YD; Wang SR; Zhang GC; Zhang J
    Pestic Biochem Physiol; 2021 Jun; 175():104859. PubMed ID: 33993955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of Natamycin Against Gray Mold of Stored Mandarin Fruit Caused by Isolates of
    Saito S; Wang F; Xiao CL
    Plant Dis; 2020 Mar; 104(3):787-792. PubMed ID: 31940447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifungal Activities and Mode of Action of
    Yan J; Wu H; Chen K; Feng J; Zhang Y
    Foods; 2021 Oct; 10(10):. PubMed ID: 34681505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches.
    Fan L; Wei Y; Chen Y; Jiang S; Xu F; Zhang C; Wang H; Shao X
    Food Chem; 2023 Mar; 403():134419. PubMed ID: 36191421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Volatile Organic Compounds Produced by
    Wang C; Duan T; Shi L; Zhang X; Fan W; Wang M; Wang J; Ren L; Zhao X; Wang Y
    Plant Dis; 2022 Sep; 106(9):2321-2329. PubMed ID: 35380464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases.
    Calvo H; Marco P; Blanco D; Oria R; Venturini ME
    Food Microbiol; 2017 May; 63():101-110. PubMed ID: 28040156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal activity of β-carbolines on Penicillium digitatum and Botrytis cinerea.
    Olmedo GM; Cerioni L; González MM; Cabrerizo FM; Rapisarda VA; Volentini SI
    Food Microbiol; 2017 Apr; 62():9-14. PubMed ID: 27889171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicillium italicum.
    Lazar EE; Wills RB; Ho BT; Harris AM; Spohr LJ
    Lett Appl Microbiol; 2008 Jun; 46(6):688-92. PubMed ID: 18444976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifungal Activity and Phytochemical Screening of Vernonia amygdalina Extract against Botrytis cinerea Causing Gray Mold Disease on Tomato Fruits.
    Yusoff SF; Haron FF; Tengku Muda Mohamed M; Asib N; Sakimin SZ; Abu Kassim F; Ismail SI
    Biology (Basel); 2020 Sep; 9(9):. PubMed ID: 32932993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea.
    Bello F; Montironi ID; Medina MB; Munitz MS; Ferreira FV; Williman C; Vázquez D; Cariddi LN; Musumeci MA
    Food Microbiol; 2022 Sep; 106():104040. PubMed ID: 35690443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoquinoline alkaloids from Mahonia aquifolium stem bark are active against Malassezia spp.
    Volleková A; Kostálová D; Sochorová R
    Folia Microbiol (Praha); 2001; 46(2):107-11. PubMed ID: 11501395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal activity of Mahonia aquifolium extract and its major protoberberine alkaloids.
    Volleková A; Kost'álová D; Kettmann V; Tóth J
    Phytother Res; 2003 Aug; 17(7):834-7. PubMed ID: 12916091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea.
    Yang D; Shi H; Zhang K; Liu X; Ma L
    Int J Food Microbiol; 2023 Mar; 388():110089. PubMed ID: 36682298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal activities of fluoroindoles against the postharvest pathogen Botrytis cinerea: In vitro and in silico approaches.
    Raorane CJ; Raj V; Lee JH; Lee J
    Int J Food Microbiol; 2022 Feb; 362():109492. PubMed ID: 34861563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.