These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 37012800)
1. Fully digital platform for local ultra-stable optical frequency distribution. Matusko M; Ryger I; Goavec-Merou G; Millo J; Lacroûte C; Carry É; Friedt JM; Delehaye M Rev Sci Instrum; 2023 Mar; 94(3):034716. PubMed ID: 37012800 [TBL] [Abstract][Full Text] [Related]
2. Digital Doppler-Cancellation Servo for Ultrastable Optical Frequency Dissemination Over Fiber. Mukherjee S; Millo J; Marechal B; Denis S; Goavec-Merou G; Friedt JM; Kersale Y; Lacroute C IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):878-885. PubMed ID: 34727031 [TBL] [Abstract][Full Text] [Related]
3. Note: A high-frequency signal generator based on direct digital synthesizer and field-programmable gate array. Du Y; Li W; Ge Y; Li H; Deng K; Lu Z Rev Sci Instrum; 2017 Sep; 88(9):096103. PubMed ID: 28964206 [TBL] [Abstract][Full Text] [Related]
4. Efficient FPGA Implementation of a Dual-Frequency GNSS Receiver with Robust Inter-Frequency Aiding. Huang KY; Juang JC; Tsai YF; Lin CT Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300375 [TBL] [Abstract][Full Text] [Related]
5. Ultra-Low Phase Noise Frequency Division With Array of Direct Digital Synthesizers. Pomponio M; Hati A; Nelson C IEEE Trans Instrum Meas; 2023 Dec; 73():. PubMed ID: 38455687 [TBL] [Abstract][Full Text] [Related]
6. Multichannel digital phase sensitive detection using a field programmable gate array development platform. Lascos SJ; Cassidy DT Rev Sci Instrum; 2008 Jul; 79(7):074702. PubMed ID: 18681724 [TBL] [Abstract][Full Text] [Related]
7. Phase-drift cancellation for a phase-shifted signal on remote fiber link transfer using a phase-compensation technique. Zhai W; Xin Y Appl Opt; 2022 Sep; 61(25):7431-7434. PubMed ID: 36256045 [TBL] [Abstract][Full Text] [Related]
8. Remote transfer of ultrastable frequency references via fiber networks. Foreman SM; Holman KW; Hudson DD; Jones DJ; Ye J Rev Sci Instrum; 2007 Feb; 78(2):021101. PubMed ID: 17578096 [TBL] [Abstract][Full Text] [Related]
9. Cascaded optical fiber link using the internet network for remote clocks comparison. Chiodo N; Quintin N; Stefani F; Wiotte F; Camisard E; Chardonnet C; Santarelli G; Amy-Klein A; Pottie PE; Lopez O Opt Express; 2015 Dec; 23(26):33927-37. PubMed ID: 26832051 [TBL] [Abstract][Full Text] [Related]
10. Ultra-stable long distance optical frequency distribution using the Internet fiber network. Lopez O; Haboucha A; Chanteau B; Chardonnet C; Amy-Klein A; Santarelli G Opt Express; 2012 Oct; 20(21):23518-26. PubMed ID: 23188314 [TBL] [Abstract][Full Text] [Related]
11. Multiplication-free timing phase error detector for Nyquist and non-Nyquist optical signals. Tang J; Cui S; Huang M; Li C; Li T; Zhou K; Liu D Opt Express; 2022 May; 30(10):16053-16068. PubMed ID: 36221458 [TBL] [Abstract][Full Text] [Related]
12. Comb-rooted multi-channel synthesis of ultra-narrow optical frequencies of few Hz linewidth. Jang H; Kim BS; Chun BJ; Kang HJ; Jang YS; Kim YW; Kim YJ; Kim SW Sci Rep; 2019 May; 9(1):7652. PubMed ID: 31113990 [TBL] [Abstract][Full Text] [Related]
13. A multifunction digital receiver suitable for real-time frequency detection and compensation in fast magnetic resonance imaging. Li L; Wyrwicz AM Rev Sci Instrum; 2019 May; 90(5):053707. PubMed ID: 31153228 [TBL] [Abstract][Full Text] [Related]
14. Note: a 4 ns hardware photon correlator based on a general-purpose field-programmable gate array development board implemented in a compact setup for fluorescence correlation spectroscopy. Kalinin S; Kühnemuth R; Vardanyan H; Seidel CA Rev Sci Instrum; 2012 Sep; 83(9):096105. PubMed ID: 23020433 [TBL] [Abstract][Full Text] [Related]
15. Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network. Calosso CE; Bertacco E; Calonico D; Clivati C; Costanzo GA; Frittelli M; Levi F; Mura A; Godone A Opt Lett; 2014 Mar; 39(5):1177-80. PubMed ID: 24690700 [TBL] [Abstract][Full Text] [Related]
16. FPGA-based 4 × 29.4912 Gbit/s PS-PAM4 signal transmission with a low-complexity probabilistic shaping scheme. Wang K; Zhang L; Chen Y; Wang Y; Wang C; Chen Y; Yu J Opt Lett; 2023 Mar; 48(6):1514-1517. PubMed ID: 36946966 [TBL] [Abstract][Full Text] [Related]
17. A Binaural Neuromorphic Auditory Sensor for FPGA: A Spike Signal Processing Approach. Jimenez-Fernandez A; Cerezuela-Escudero E; Miro-Amarante L; Dominguez-Moralse MJ; de Asis Gomez-Rodriguez F; Linares-Barranco A; Jimenez-Moreno G IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):804-818. PubMed ID: 27479979 [TBL] [Abstract][Full Text] [Related]
18. A highly integrated FPGA-based nuclear magnetic resonance spectrometer. Takeda K Rev Sci Instrum; 2007 Mar; 78(3):033103. PubMed ID: 17411174 [TBL] [Abstract][Full Text] [Related]
19. An Optimization on the Neuronal Networks Based on the ADEX Biological Model in Terms of LUT-State Behaviors: Digital Design and Realization on FPGA Platforms. Wang Y; Taylan O; Alkabaa AS; Ahmad I; Tag-Eldin E; Nazemi E; Balubaid M; Alqabbaa HS Biology (Basel); 2022 Jul; 11(8):. PubMed ID: 36009754 [TBL] [Abstract][Full Text] [Related]
20. Credit-card sized field and benchtop NMR relaxometers using field programmable gate arrays. Webber JBW; Demin P Magn Reson Imaging; 2019 Feb; 56():45-51. PubMed ID: 30344057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]