BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 3701298)

  • 1. Catecholamine-induced transport systems in trout erythrocyte. Na+/H+ countertransport or NaCl cotransport?
    Borgese F; Garcia-Romeu F; Motais R
    J Gen Physiol; 1986 Apr; 87(4):551-66. PubMed ID: 3701298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transient sodium-hydrogen exchange system induced by catecholamines in erythrocytes of rainbow trout, Salmo gairdneri.
    Baroin A; Garcia-Romeu F; Lamarre T; Motais R
    J Physiol; 1984 Nov; 356():21-31. PubMed ID: 6520787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of cell volume and ion transport by beta-adrenergic catecholamines in erythrocytes of rainbow trout, Salmo gairdneri.
    Borgese F; Garcia-Romeu F; Motais R
    J Physiol; 1987 Jan; 382():123-44. PubMed ID: 3040965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hormone-induced co-transport with specific pharmacological properties in erythrocytes of rainbow trout, Salmo gairdneri.
    Baroin A; Garcia-Romeu F; Lamarre T; Motais R
    J Physiol; 1984 May; 350():137-57. PubMed ID: 6747848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutaraldehyde fixation of the cAMP-dependent Na+/H+ exchanger in trout red cells.
    Motais R; Borgese F; Scheuring U; Garcia-Romeu F
    J Gen Physiol; 1989 Aug; 94(2):385-400. PubMed ID: 2552001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na+-H+ exchange and pH regulation in red blood cells: role of uncatalyzed H2CO3 dehydration.
    Motais R; Fievet B; Garcia-Romeu F; Thomas S
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C728-35. PubMed ID: 2539723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The control of Na+/H+ exchange by molecular oxygen in trout erythrocytes. A possible role of hemoglobin as a transducer.
    Motais R; Garcia-Romeu F; Borgese F
    J Gen Physiol; 1987 Aug; 90(2):197-207. PubMed ID: 3655716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cl- transport via anion exchange in Necturus renal microvillus membranes.
    Seifter JL; Aronson PS
    Am J Physiol; 1984 Dec; 247(6 Pt 2):F888-95. PubMed ID: 6507628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a K(+)-H+ exchange in trout red blood cells.
    Fievet B; Guizouarn H; Pellissier B; Garcia-Romeu F; Motais R
    J Physiol; 1993 Mar; 462():597-607. PubMed ID: 8392574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium entry mechanisms in distal convoluted tubule cells.
    Gesek FA; Friedman PA
    Am J Physiol; 1995 Jan; 268(1 Pt 2):F89-98. PubMed ID: 7840252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desensitization by external Na of the cyclic AMP-dependent Na+/H+ antiporter in trout red blood cells.
    Garcia-Romeu F; Motais R; Borgese F
    J Gen Physiol; 1988 Apr; 91(4):529-48. PubMed ID: 2839593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red cell volume regulation: the pivotal role of ionic strength in controlling swelling-dependent transport systems.
    Motais R; Guizouarn H; Garcia-Romeu F
    Biochim Biophys Acta; 1991 Oct; 1075(2):169-80. PubMed ID: 1657175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of catecholamines on deformability of red cells from trout: relative roles of cyclic AMP and cell volume.
    Chiocchia G; Motais R
    J Physiol; 1989 May; 412():321-32. PubMed ID: 2557428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that parallel Na+-H+ and Cl(-)-HCO3-(OH-) antiporters transport NaCl in the proximal tubule.
    Baum M
    Am J Physiol; 1987 Feb; 252(2 Pt 2):F338-45. PubMed ID: 3028174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney.
    Berry CA; Rector FC
    Semin Nephrol; 1991 Mar; 11(2):86-97. PubMed ID: 2034928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volume-activated Cl(-)-independent and Cl(-)-dependent K+ pathways in trout red blood cells.
    Guizouarn H; Harvey BJ; Borgese F; Gabillat N; Garcia-Romeu F; Motais R
    J Physiol; 1993 Mar; 462():609-26. PubMed ID: 8392575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of anions on the Na(+)-H+ exchange of trout red blood cells.
    Guizouarn H; Scheuring U; Borgese F; Motais R; Garcia-Romeu F
    J Physiol; 1990 Sep; 428():79-94. PubMed ID: 2172527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independence of apical membrane Na+ and Cl- entry in Necturus gallbladder epithelium.
    Reuss L
    J Gen Physiol; 1984 Sep; 84(3):423-45. PubMed ID: 6481335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium and potassium transport in trout (Salmo gairdneri) erythrocytes.
    Bourne PK; Cossins AR
    J Physiol; 1984 Feb; 347():361-75. PubMed ID: 6707960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled NaCl transport: cotransport or parallel ion exchange?
    Powell DW; Fan CC
    Kroc Found Ser; 1984; 17():13-26. PubMed ID: 6595345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.