These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 3701298)

  • 1. Catecholamine-induced transport systems in trout erythrocyte. Na+/H+ countertransport or NaCl cotransport?
    Borgese F; Garcia-Romeu F; Motais R
    J Gen Physiol; 1986 Apr; 87(4):551-66. PubMed ID: 3701298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transient sodium-hydrogen exchange system induced by catecholamines in erythrocytes of rainbow trout, Salmo gairdneri.
    Baroin A; Garcia-Romeu F; Lamarre T; Motais R
    J Physiol; 1984 Nov; 356():21-31. PubMed ID: 6520787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of cell volume and ion transport by beta-adrenergic catecholamines in erythrocytes of rainbow trout, Salmo gairdneri.
    Borgese F; Garcia-Romeu F; Motais R
    J Physiol; 1987 Jan; 382():123-44. PubMed ID: 3040965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hormone-induced co-transport with specific pharmacological properties in erythrocytes of rainbow trout, Salmo gairdneri.
    Baroin A; Garcia-Romeu F; Lamarre T; Motais R
    J Physiol; 1984 May; 350():137-57. PubMed ID: 6747848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutaraldehyde fixation of the cAMP-dependent Na+/H+ exchanger in trout red cells.
    Motais R; Borgese F; Scheuring U; Garcia-Romeu F
    J Gen Physiol; 1989 Aug; 94(2):385-400. PubMed ID: 2552001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na+-H+ exchange and pH regulation in red blood cells: role of uncatalyzed H2CO3 dehydration.
    Motais R; Fievet B; Garcia-Romeu F; Thomas S
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C728-35. PubMed ID: 2539723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The control of Na+/H+ exchange by molecular oxygen in trout erythrocytes. A possible role of hemoglobin as a transducer.
    Motais R; Garcia-Romeu F; Borgese F
    J Gen Physiol; 1987 Aug; 90(2):197-207. PubMed ID: 3655716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cl- transport via anion exchange in Necturus renal microvillus membranes.
    Seifter JL; Aronson PS
    Am J Physiol; 1984 Dec; 247(6 Pt 2):F888-95. PubMed ID: 6507628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a K(+)-H+ exchange in trout red blood cells.
    Fievet B; Guizouarn H; Pellissier B; Garcia-Romeu F; Motais R
    J Physiol; 1993 Mar; 462():597-607. PubMed ID: 8392574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium entry mechanisms in distal convoluted tubule cells.
    Gesek FA; Friedman PA
    Am J Physiol; 1995 Jan; 268(1 Pt 2):F89-98. PubMed ID: 7840252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desensitization by external Na of the cyclic AMP-dependent Na+/H+ antiporter in trout red blood cells.
    Garcia-Romeu F; Motais R; Borgese F
    J Gen Physiol; 1988 Apr; 91(4):529-48. PubMed ID: 2839593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red cell volume regulation: the pivotal role of ionic strength in controlling swelling-dependent transport systems.
    Motais R; Guizouarn H; Garcia-Romeu F
    Biochim Biophys Acta; 1991 Oct; 1075(2):169-80. PubMed ID: 1657175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of catecholamines on deformability of red cells from trout: relative roles of cyclic AMP and cell volume.
    Chiocchia G; Motais R
    J Physiol; 1989 May; 412():321-32. PubMed ID: 2557428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that parallel Na+-H+ and Cl(-)-HCO3-(OH-) antiporters transport NaCl in the proximal tubule.
    Baum M
    Am J Physiol; 1987 Feb; 252(2 Pt 2):F338-45. PubMed ID: 3028174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney.
    Berry CA; Rector FC
    Semin Nephrol; 1991 Mar; 11(2):86-97. PubMed ID: 2034928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volume-activated Cl(-)-independent and Cl(-)-dependent K+ pathways in trout red blood cells.
    Guizouarn H; Harvey BJ; Borgese F; Gabillat N; Garcia-Romeu F; Motais R
    J Physiol; 1993 Mar; 462():609-26. PubMed ID: 8392575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of anions on the Na(+)-H+ exchange of trout red blood cells.
    Guizouarn H; Scheuring U; Borgese F; Motais R; Garcia-Romeu F
    J Physiol; 1990 Sep; 428():79-94. PubMed ID: 2172527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independence of apical membrane Na+ and Cl- entry in Necturus gallbladder epithelium.
    Reuss L
    J Gen Physiol; 1984 Sep; 84(3):423-45. PubMed ID: 6481335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium and potassium transport in trout (Salmo gairdneri) erythrocytes.
    Bourne PK; Cossins AR
    J Physiol; 1984 Feb; 347():361-75. PubMed ID: 6707960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled NaCl transport: cotransport or parallel ion exchange?
    Powell DW; Fan CC
    Kroc Found Ser; 1984; 17():13-26. PubMed ID: 6595345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.